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Multiple myeloma (MM) remains incurable despite advancesin treatment
options. Although tumor subtypes and specific DNA abnormalities are
linked to worse prognosis, the impact ofimmune dysfunction on disease
emergence and/or treatment sensitivity remains unclear. We developed

an Immune Atlas of MM by generating profiles 0f 1,397,272 single cells
from the bone marrow (BM) of 337 newly diagnosed participants and
characterized immune and hematopoietic cell populations. Cytogenetic
risk-based analysis revealed heterogeneous associations with T cells of
BM, with 17p13 deletion showing distinct enrichment of a type linterferon

signature. The disease progression-based analysis revealed the presence of
aproinflammatory immune senescence-associated secretory phenotypein
rapidly progressing participants. Furthermore, signaling analyses suggested

active intercellular communication involving a proliferation-inducing
ligand and B cell maturation antigen, potentially promoting tumor growth
and survival. Lastly, using independent discovery and validation cohorts,
we demonstrated that integratingimmune cell signatures with known
tumor cytogenetics and individual characteristics significantly improves
stratification for the prediction of survival.

Multiple myeloma (MM) is the second most prevalent hematological
cancer and its incidence continues to rise globally?. An estimated
35,780 new diagnoses and 12,540 deaths are projected for 2024 in the
United States’. The emergence of myeloma-targeting biologic and
immune-based therapies has led to notable improvements in out-
comes”. Nevertheless, curative outcomes are characteristically elusive
and most persons with MM eventually succumb to the disease. Disease
evolutionis associated with progressive immune dysregulation. With
the recent US Food and Drug Administration approval of immuno-
therapies such as chimeric antigen receptor (CAR) T cells and bispecific
T cell engagers, understanding theimmune elementsin the myeloma
microenvironment has become increasingly important for address-
ing disease emergence and/or response to treatment. Over the past
15 years, multiple studies® ', including the Clinical Outcomes in MM to
Personal Assessment of Genetic Profiles (CoMMpass) registry®", have

investigated the genomiclandscape and diversity of MM and identified
specific tumor subtypes and their underlying associations with clinical
outcomes. Furthermore, these studies have demonstrated that, like
other cancers, MM tumors are multiclonal, with their clonal makeup
evolving over the course of the disease progression and exposure to
treatments. Notably, prognostic models leveraging these genetic
determinants are limited in their capacity to identify high-risk (HR)
participants for early relapse. This suggests that latent, tumor-extrinsic
factors contributing to prognosis are not captured by current models.

The bone marrow (BM) microenvironment (BMME) composi-
tion in MM has been identified as a factor affecting tumor progres-
sion and therapeutic outcomes. Recent studies have pointed to T cell
exhaustion'>” and the infiltration ofimmunomodulatory cell popula-
tions contributing toimmunoediting and immune evasionin MM, such
asmyeloid-derived suppressor cells (MDSCs), regulatory T cells (Treg),
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Th17 cells, dendritic cells (DCs) and dysregulated natural killer (NK)
cells, as well as tumor-associated neutrophils and macrophages™ ™.
We hypothesized that profiling the BMME of persons with newly diag-
nosed MM (NDMM) before treatment with standard myelomatherapies
could reveal immune populations and signaling pathways associated
with disease emergence or clinical outcomes. Such insights can be
used to refine current participant stratification tools including the
revised International Staging System (R-ISS) and, importantly, inform
strategies for target identification and rational integration of various
immunotherapiesin MM.

To this end, we generated a BMME Immune Atlas of participants
with NDMM from the MM Research Foundation (MMRF) CoMMpass
study (NCT01454297), which included corresponding detailed clini-
cal and genomic information. We profiled and analyzed 1,149,344
cells from 263 participants with NDMM during the discovery phase to
identifyimmune populations and phenotypes associated with MM sub-
typesand participant survival. These findings were further validated by
generating profiles of anadditional 247,928 cells from 74 participants
with NDMM.

Results

An MM BMME cell atlas

To characterize the BMME of MM, we profiled CD138” BM aspirate from
263 and 74 participants with NDMM as discovery and validation cohorts,
respectively (Fig. 1a and Extended Data Fig. 1a-e). The demographic
and clinical characteristics of the discovery cohort are reflective of
the CoMMpass study (Supplementary Table 1), including median age
(62.9 versus 64.1 years), African American percentage (16.6% versus
17.5%), ISS stage 3 (27.9% versus 26.3%) and HR cytogenetics' (51.6%
versus 53.2%) (Fig. 1b and Supplementary Table1). Therapeutically, 184
participantsinitially received acombination of proteasome inhibitors
(PIs),immunomodulatory drugs (IMiDs) and steroids, while 135 under-
wentautologous stem cell transplantation (ASCT) as first-line therapy
(Fig. 1c). Allsamples were profiled using our previously standardized
single-cell RNA sequencing (scRNA-seq) protocol'>'*?°,

Initially, we examined how the participant’simmune landscape
varied according to tumor type by stratifying participants on the basis
of individual cytogenetic alterations, including del(17p13), t(14;16)
[MAF], t(8;14)[MAFA], t(14;20)[MAFB], t(4;14)[WHSC1/MMSET/NSD2]
and gain(1q21). We also investigated combining these cytogenetic
alterations to define HR and standard-risk (SR) participants using
the Davies risk definition'® (Fig. 1d,e and Supplementary Table 2). We
additionally stratified participants on the basis of their disease progres-
sion kinetics into rapid progressors (RPS; Nyiscovery = 67, Nyaiigation = 29),
with progression events occurring within 18 months of diagnosis, and
nonprogressors (NPS; Nyiscovery = 83, Nyalidation = 35), With durable remis-
sion for at least 4 years following treatment (Fig. 1f,g). Interestingly,
while evaluation of the discovery cohort confirmed that most HR par-
ticipants were mainly associated with RPs and vice versa, we identified
32 HR participants as NPs and 19 SR participants as RPs, indicating that

other factors, such as theimmune environment, might have additional
critical roles (Fig. 1f). As expected, participants categorized as SR had
improved progression-free survival (PFS) relative to HR participants,
suggesting that our risk classification strategy was informative for
predicting outcomes (Fig. 1h; P= 0.007). Additionally, survival analysis
on other clinical variables also demonstrated that discovery cohort
participants who either underwent BM transplant (P=9.32 x107%) or
received triplet treatment (PI, IMiD and steroid) (P=0.0002) or who
were classified as ISS stage I had significantly (P < 5.29 x107°) better
outcomes (Fig. 1h). Similar patterns of outcomes were also observedin
the validation cohort, underscoring the similarity in our discovery and
validation cohorts (Extended DataFig.1e and Supplementary Table 3).

Single-cell transcriptome profiling identifies traditional and
rare cell populations of the myeloma BMME

Across 1,149,344 high-quality BM cells (Fig. 2a) the baseline BMME
consisted of T cells (30.51% CD8", 23.39% CD4"), NK cells (6.82%),
B cells (8.51%), myeloid cells (12.20%), erythroblasts and erythrocytes
(7.87%) and plasma cells (9.17%), with the remainder comprising small,
independent populations (hematopoietic stem cells (HSCs), plasma-
cytoid DCs (pDCs) and fibroblasts; 1.53%) (Fig. 2b,c). Canonical lineage
markers were used for cell type and subtype annotation (Fig. 2b,c). The
cellular profiles showed subtle variations associated with the process-
ingsites (thatis, Mayo, Emory, Washington University and Icahn School
of Medicine at Mount Sinai) and batch-corrected using the Harmony
approach (Extended Data Fig. 2a-f).

The T and NK cell compartment formed 30 clusters across CD4"
(11clusters), CD8" (15 clusters) and NK (four clusters) cell populations
(Fig.2d,e and Extended Data Fig. 3a—c). CD4" T cell clusters comprised
naive (Tn), central memory (Tcm), effector (Teff) memory, Treg and
helper (Th) cells (Fig. 2f and Extended Data Fig. 3b). This large-scale
analysis also enabled the identification of rare cytotoxic CD4" T cells
with high expression of GZMB and PRFI markers. Similarly, the CD8*
T cell population also comprised multiple clusters of memory and Teff
cells, aswell asactivated Teff subtypes (thatis, CD8_Teff HLA) with low
expression of cytotoxic markers but high expression of human leuko-
cyte antigen (HLA) markers (Fig. 2g and Extended DataFig. 3c). The NK
cell clusters comprised classical CD56 """ and CD56*4™ cell types, as
well as rare adaptive and BM-resident cell types (Fig. 2h).

The myeloid lineage comprised 18 clusters of classical CD14" and
nonclassical CD16" monocytes, granulocytes, neutrophils, conven-
tional DCs (cDCs), pDCs and macrophages (Fig. 2i,j). The B cell com-
partment contained pro-B cells, as well asimmature transitional, naive
and memory B cells (Fig. 2k,I). The compartment also captured imma-
ture hematopoietic populations, such as HSCs, mast cells and eryth-
roblasts. A distinct population of mature erythrocytes was observed
(Extended Data Fig. 3d,e), with nine subclusters exhibiting minimal
participant-specific heterogeneity.

The plasma cells, ~9.17% of cells on average in baseline samples
(Extended Data Fig. 3f-h), were likely residual myeloma cells that

Fig.1| Overview of the Immune Atlas design, workflow and participant
characteristics. a, Overview of the Immune Atlas study design, discovery
(Mparticipants = 263) and validation (11,icipans = 74) participant cohorts, sample
processing and analysis workflow. b, Clinical characteristics of participants
(Mparticipants = 263) in the discovery cohort. The forest plot illustrates the effect of
various clinical features on PFS. Error bars display the 95% confidence interval
(CI). ¢, Dot plot depicting the cross-section of samples based on ASCT and
frontline treatment, where the dot size indicates the number of participants
and dot color indicates the type of treatment regimen. d, Bar chart showing the
total number of participants with each of the six genetic events used for risk
classification. e, UpSet plot showing the distribution of the major cytogenetic
abnormalities comprising the Davies-based HR myeloma definition. f, UpSet plot
showing theintersection of participants categorized as SR or HRand NP or RP at
baseline. g, Overview of progression group categorization and study design for

the discovery cohort. The participants with a progression event within the first
18 months following therapy were classified as RPs (1, icipanes = 67). Participants
with durable remission or no observed progression for at least 4 years were
classified as NPs (1, icipants = 83). Participants with a progression event between
18 months and 4 years were classified as RPS (1ricipants = 71). The participants
who exited the study before 4 years of disease diagnosis without experiencing
aprogression event were classified as Inc (n =42). h, Kaplan-Meier curves
display the survival analysis for participants categorized on the basis of risk
stratification (HR versus SR), transplant as a frontline treatment, treatment type
and ISS staging. Participants lacking ISS stage information at baseline or WGS
information for cytogenetic risk stratification were omitted from the relevant
figure panels. The Pvalues were estimated using alog-rank test.aand g were
created with BioRender.com.
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were not effectively depleted by CD138 bead selection. The number
of plasma cells was significantly correlated with levels of plasma
cells measured before the CD138 selection step, indicating the inef-
ficiency of the bead selection method for samples with high tumor
cell content (Extended DataFig. 3i,j; R = 0.63, P=1.68 x 10¢). Plasma
cells captured in scRNA-seq also showed enrichment for muta-
tions in the driver genes, indicating that these were malignant cells
(Extended DataFig. 3k). The higher malignant plasmacell proportions
were associated with RPs, with potential implications for participant
outcomes (Extended Data Fig. 3I,m).

Analysis of tumor cytogenetic subgroups reveals
heterogeneous impacton T cell compartment

To explore the potential relationship between tumor cytogenetic sub-
groups and their BM immune microenvironment, we assessed key
abnormalities, including 1q21 gain, translocations (t(4;14)[NSD2],
t(14;16)[MAF], 1(8;14)[MAFA] and t(14;20)[MAFB]) and 17p13 deletion.
We also assessed the combined effects of these cytogenetic altera-
tions by stratifying participants into HR and SR groups'®. Overall, most
immune populations had similar abundances across cytogenetic sub-
groups, bothwhen combined and whenindividually assessed (Fig. 3a).
Some differences in specific cell types were detectable, including a
higherabundance of rare cytotoxic CD4" T cellsin NSD2t(4;14) partici-
pants (Fig. 3a; P=0.017). The participants with NSD2t(4;14) and 1q21
gainshowed significant depletion of CD4'IFN (interferon) Teff mem-
ory (Pyspy = 0.043, P,;5; = 0.001) and CD4'IFN* Tem cells (Pysp, = 0.043,
P =0.011) (Fig. 3a). Interestingly, participants with MAF translocation
exhibited significant dysregulationin the B cells rather thanthe T cells
with depletion of naive and memory B cell populations (P,;,. = 0.001,
Pem=0.004) (Fig. 3a) and enrichment of immature B cell states rang-
ing from the CD34" pro-B population to the transitional B cell popu-
lation (Fig. 3a; P< 0.005). The MAF translocation participants also
uniquely displayed significant enrichment of animmunosuppressive
macrophage cluster (Fig. 3a; P=0.031). Notably, across myeloid and
T cell compartments, type 1IFN (IFN-I) response-associated clusters
depict reversed trends in participants with 17p13 deletion as com-
pared to NSD2 or 1q21 abnormalities. In contrast to the reductions in
IFN-I-responsive CD4" memory populations observed in NSD2 t(4;14)
and1q21gain participants, participants with 17p13 deletion tended to
possess a higher abundance of IFN-stimulated populations, with sig-
nificant enrichment of CD4" Teff memory IFN-I cells (Fig. 3a; P= 0.007).
Further combined analysis of these putative HR tumor abnormalities
revealed significant enrichment of the late-activated CD8 'HLA" Teff
(thatis, CD8_Teff HLA; P=0.041) population and reduction in CD8*
Tn cellsand CD4 TNF (tumor necrosis factor)" Teff cells (P= 0.006 and
0.042, respectively; Fig. 3a). This higher abundance of CD8_Teff HLA

Teff population was significantly associated with poor overall survival
(0S) (P=0.036; Extended Data Fig. 4a), and a trend toward worse PFS
(P=0.062; Extended Data Fig. 4b).

To further investigate the associations of individual HR abnor-
malities and their combined impact on the transcriptome, we con-
ducted anin-depthanalysis focusing on T cell compartments (Fig. 3b).
Participants with NSD2 and 1921 gain showed higher-than-average
expression of CD4"and CD8' T cell cytotoxicity and senescence-related
genes (Fig. 3b). Interestingly, participants with MAF translocation
showed higher exhaustion marker expression among CD8" T cells,
a feature that was primarily found in the early activated GZMK' Teff
memory cells (Extended Data Fig. 4¢,d). The combined analysis of HR
participants also highlighted overexpression of major histocompat-
ibility complex class Il (MHC-II) and cytotoxicity markers across CD8"
T cells (Fig. 3b) driven by the higher abundance of the CD8_Teff HLA
population (Fig.3c; P=0.016). The interaction analysis of cytogenetic
abnormalities suggested that the co-occurrence of NSD2and 1q21 gain
significantly contributed toward the enrichment of the CD8_Teff_HLA
Teff population (Fig. 3c; P=0.021) associated with poor outcomes
(Extended Data Fig. 4a,b). The trajectory analysis on the T cell com-
partment showed that the HR-enriched CD8_Teff HLA population
represented atransitional state between early activated CD8" memory
toterminally differentiated cytotoxic populations (Fig. 3d). This popu-
lation also showed enrichment of T cell dysfunction characteristics
among participants with HR cytogenetics, measured as a function of
the expression of exhaustion or senescence markers (P=2.35x107;
Fig.3e, Extended DataFig.4c,d and Supplementary Table 4). This shift
oraccumulation of activated T cell states was mainly observed in par-
ticipants with NSD2and 1q21gain, while participants with biallelic17p13
deletionor17p13 deletion paired with anonsynonymous 7TP53 mutation
had lower levels of differentiated CD8" T cells, possibly suggesting dif-
ferentimmune escape mechanisms among the HR cytogenetic events
(Fig.3b and Extended Data Fig. 4e,f).

Tumor and microenvironment cells of participants with17p13
deletions depict distinct enrichment of IFN-I signature

To further study the distinct IFN-I-associated gene expression enrich-
ment observed in T cells of 17p13 participants across other compart-
ments, we generated an IFN-I signature using top marker genes from
T cell IFN-I clusters (Supplementary Table 4). Participants with elevated
expression of the IFN-Isignature in one lineage, such as T cells, showed
overexpression across all other compartments, including malignant
plasmacells (Extended DataFig. 4g). Across risk groups, IFN-Isignature
enrichment was specific to 17p13 cytogenetic groups only (Fig. 3f).
Further interaction analysis of 121 with other HR abnormalities indi-
cated that IFN-1 downregulation was primarily associated with 1q21

Fig. 2| Single-cell Immune Atlas of samples from participants with

MM. a, UMAP embedding of 1,149,344 CD138” BMME cells collected from
participants with MM. A total of 106 clusters were observed, spanning five

major compartments defined by canonical markers: T and NK cells, B cells

and erythroblasts, myeloid cells, erythrocytes and plasma cells. Populations
identified as doublets are colored gray. b, Feature plots displaying the
normalized gene expression for a selection of lineage-specific markers. UMAPs
and per-aliquot cluster compositions to depict the effects of batch correction
for major lineages are shown in Extended Data Fig. 2. ¢, A stacked bar chart
displaying the average per-participant cell type composition at baseline. Clusters
are colored by their lineage and shaded by subtype. Doublet populations
areomitted. d, UMAP of the T lymphocyte and NK compartment. Cells are
colored by individual cell type, with shaded boundaries representing regions
predominantly containing CD4" (purple), CD8" (orange) or NK (green) cells. The
color for specific cell typesisincluded in the corresponding dot plots (f-h). An
extended dot plot for precise annotation of different T and NK cell subtypes is
shown in Extended Data Fig. 3a. UMAPs for only the CD8" and CD4" T cells are
alsoshown in Extended Data Fig. 3b,c. e, Feature plots displaying the normalized
gene expression per cell for markers to distinguish CD4*, CD8" and NK cells.

f-h, Dot plots displaying the average scaled expression of select marker genes
used for precise cluster annotation. Expression is visualized on ared-blue color
scale, with the size of each dot corresponding to the percentage expression. Dot
plots are split by lineage into NK cells (f), CD8" T cells (g) and CD4" T cells (h).
The colored triangle next to the cluster name matches the cluster color in the
corresponding UMAP (d). Percent.mt refers to the percentage of mitochondrial
transcripts. i, UMAP of the myeloid compartment. Cells are shaded by their
subtype. Doublet populations are colored gray. j, Dot plot displaying the average
scaled expression of select marker genes for precise cluster annotationin the
myeloid compartment. Expression is visualized on a red-blue color scale, with
the size of each dot corresponding to the percentage expression. The triangle
next to the cluster name matches the cluster color in the corresponding UMAP.
k, UMAP of the B cell and erythroblast compartment. Cells are colored by their
lineage (B cells, cyan; erythrocytes, red; others, dark blue), shaded by subtype.
Doublet populations are colored gray. I, Dot plot displaying the average scaled
expression of select marker genes used for precise cluster annotationin the B
celland erythroblast compartment. Expressionis visualized on a red-blue color
scale, with the size of each dot corresponding to the percentage expression.
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gain (Extended Data Fig. 4h; P < 0.05). Conversely, enrichment of IFN-I
populations was strongly associated with participants having a com-
plete loss of TP53 (Extended Data Fig. 4i; P < 0.05). This IFN-I signa-
ture enrichmentin the plasma cells from scRNA-seq was confirmed on
independently generated bulk RNA-seq data from CD138" malignant
cells of these participants (R? = 0.75, P=1.63 x 10 Fig. 3g). Analysis of
CD138" bulk RNA-seq data from the CoMMpass cohort (1, icipants = 660)
confirmed opposite IFN-l activity patterns between 1q21gain and TP53
loss; participants with 1q21gain or amplification showed reduced IFN-I
activity (Fig. 3h; P=0.003), whereas those with partial or complete
TP53 loss exhibited increased activity (Fig. 3i; P= 0.015).

Furthermore, we also examined additional HR abnormali-
ties, including chromothripsis and APOBEC (apolipoprotein B
mRNA-editing enzyme, catalytic polypeptide) activity, which showed
no T cell dysregulation but some alterationsin myeloid and B cell com-
partments (Extended Data Fig. 4j).

GZMK' Teff memory cell level correlates with the abundance of
myeloma cells

In addition, we also examined the impact of plasma cell levels on
immune cells and, as expected, most nonmalignant BM populations
were reduced in participants with elevated plasma cell levels (Fig. 3j).
However, GZMK'CDS8* Teff memory cells, BM-resident NK cells and
fibroblasts showed significant positive correlations with plasma cell
percentages (P=2.4 x107%; Fig. 3k-m and Extended Data Fig. 4k-m).
In participants with higher plasma cell percentages, CD8" T cells
showed increased TIGIT and TOX expression (P=0.035 and 0.014,
respectively; Fig. 3n), mainly within GZMK" Teff memory cells
(Extended Data Fig. 4¢,d), suggesting that high plasma cell levels might
be promoting T cell exhaustion in BM.

RPs display accumulation of Teffand depletion of Tn
populations

We subsequently investigated potential BMME alterations in RPs
within <18 months (1, cipanes = 67) Of initial therapy, compared to
those who had not progressed for at least 4 years (NP, N, icipants = 83)

(Fig. 1g). Most of these participants received standard triplet ther-
apy, consisting of a P1, IMiD and a steroid as their first line of therapy
(Supplementary Table 5). Broadly, RPs had lower abundances of CD4*
T cells and B cells and higher levels of myeloid, plasma and erythroid
cellsrelative to NPs (Fig. 4a). The lower levels of B cells were driven by
alargereductionin transitional,immature and naive B cells (P = 0.003;
Fig. 4b and Extended Data Fig. 5a,b).

Toinvestigate myeloid compartment enrichment (P=0.027) inthe
RPs, we performed atrajectory analysis that revealed anticipated pro-
gression from immature to activated CD14" monocytes, culminating
intomature CD16" monocytes (Fig.4c). RPs were significantly enriched
for CD14°CD163" monocytes (Macro/Mono, P=0.006) and depleted
of IFN-I-stimulated CD14" monocytes (CD14"Mono_IFN, P=0.026)
(Fig.4cand Extended DataFig. 5c). This IFN-Imonocyte cluster contains
several IFN-I signature markers, which have been previously noted in
persons with TP53loss (Fig. 3f-i). Differential gene expression analysis
(DGEA) of CD14" monocyte populationsidentified significant upregula-
tion of proinflammatory markers in RPs, such as CCL3, CCL4, IL1B and
CXCLS8, whereas IFN-I signaling-related genes were increased in NPs
(thatis, ISG15, IFI6, IFI44 and MXI) (Fig. 4d). Pathway analysis revealed
enrichment of proinflammatory pathways (TNF, interleukin (IL)-10
and chemokine signaling) in RPs, indicating an immunosuppressive
phenotype. In contrast, NPs showed enrichment of MHC-IIl antigen
presentation and IFN signaling, consistent with classical antigen pro-
cessing (Fig. 4e).

Thefocused analysis onthe T cellcompartmentidentified asignifi-
cantly higher proportion of CD8" T cells (45.5%) in RPs in comparison
to NPs (39.9%) (Fig. 4f; P=0.01). Significant enrichment of CD8" Tn
(P=0.015)and CD8" GZMK' Tcm (CD8_Tcm_GZMK P=0.023) cells was
observed in NPs, while RPs exhibited higher abundance of differenti-
ated CD8" cytotoxic Teff (CD8_Teff, P=0.0008) and HLA" Teff (CD8_
Teff HLA, P=0.001) populations (Fig. 4f and Extended Data Fig. 5d).
Furthermore, DGEA supported this cytotoxic shift of T cells in RPs
by identifying a significant upregulation of cytotoxicity markers
(NKG7, GNLY, PRF1, FGFBP2, KLRD1, GZMB and GZMA). The T cells of
NPs demonstrated significant upregulation of genes for early-stage,

Fig. 3| BMME alterations associated with cytogenetic abnormalities. a, BM
immune cell type and subtype abundances comparing HR versus SR participants
or stratifying by individual HR abnormalities. Proportions were normalized

to the total number of nonmalignant cells per participant. Colorsindicate the
coefficient of alinear model fitted to logit-transformed proportion adjusting for
processing site, with orange and blue indicating cell populations with higher and
lower abundances, respectively. Shapes denote two-sided P values (circles, not
significant; diamonds, P < 0.05; squares, P < 0.01). b, Expression of marker genes
representing CD4"and CD8' T cell states in participants stratified by composite
risk (thatis, HR versus SR) or individual cytogenetic risk abnormalities. The
colorsindicate zscore normalization, with positive values indicating higher
expression levels (red) in participants with the risk event compared to the dataset
average, whereas negative values (blue) indicate lower expression levels. ¢, Box
plots show per-participant proportions for CD8" Teff HLA cells as a fraction

of total CD8" cells, stratified by combined Davies risk (HR, 1ricipanes = 123;

SR, Nyariicipants = 108) or the presence 0f 1921 gain (Mpeicipans = 72), NSD2t(4;14)
(Mparticipants = 12), their combination (7,icipanes = 18) or neither (Mparicipants = 127).
Two-sided Pvalues were computed using a linear model on logit-transformed
proportions adjusting for site. d, Pseudotime trajectory of the CD8" T cells,
witharrows indicating the paths along the trajectory originating at CD8" Tn
cells. The cell types with high and lower proportions in HR as compared to SR

are shown with shades of orange and blue colors, respectively. Proportions are
shown as log odds ratios relative to total CD8" T cells. e, Putative dysfunctional T
cell signature (Supplementary Table 4) enrichment in CD8 Teff HLA" cells from
participants with HR NDMM (72, sicipanes = 123) as compared to SR (yricipanes = 108).
Thesignificance of the difference in signature levels was determined using the
Wilcoxon rank-sum test, two-sided. The dashed red line indicates the median
dysfunctional signature score for standard-risk patients. f, IFN-I response
signature levels across major cell compartments, grouped by composite or
individual HR abnormalities. Per-participant IFN-I response scores across

each compartment arein Extended Data Fig. 4g. g, Correlation between IFN-I
response signature scores between plasma cells of CD138* (bulk RNA-seq,

GSVA) and CD138" (pseudobulk scRNA-seq) compartments. Participants with
greater than 50 plasma cells in scRNA-seq and matching bulk data were included
(Nparticipants = 108). Significance of the correlation was calculated using a linear
model, adjusting for processing site using a two-sided test. h,i, IFN-Iresponse
signature scores derived from bulk RNA-seq, comparing participants with

and without 1g21 copy-number alterations (h; normal, 1, cipanes = 408; gain,
Rparicipants= 213; AMDP, Npsriicipanss = 39) and participants with and without TP53loss-
of-function mutations (i; none, My,icipanes = 571 partial, Myaicipanss = 55; complete,
Rparicipants = 24). Participants included in the CoMMpass registry with available
riskinformation and CD138* bulk RNA-seq data were analyzed. The significance
of differences in enrichment was evaluated using pairwise two-sided Student’s
t-tests between groups. j, Dot plot summarizing differential abundance results
across cell populations, including plasma cells. The marker shape indicates two-
sided Pvalues and color represents the log odds ratios from a linear model fitted
tologit-transformed proportions, with positive values denoting enrichment
correlated with plasma cell levels. Proportions were computed as a fraction of

all cell populations, excluding doublets. Differential abundance was assessed
using the plasma cell percentage as both a continuous covariate and a categorical
covariate (>20% versus <20%). k-m, Scatter plotsillustrating the relationship
between BM plasma cell percentages, as estimated by flow cytometry before
CD138isolation (x axis) and the abundance of CD8* Teff memory cells (k), BM-
resident NK cells (I) and fibroblasts (m). n, Comparison of exhaustion-related
markers TIGIT and TOX expression across CD8* T cells between participants with
less than (blue; n=189) and greater than (0range; N, icipanes = 74) 20% plasma cells.
Inthe box plots, bounds of the box represent the 25th and 75th percentiles, with
the center displaying the median. Whiskers extend to 1.5x the interquartile range
(IQR) beyond the bounds of the box.
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Tn populations (LTB, TCF7 and SELL) (Fig. 4g). RPs showed enrich-
mentofinterleukin and chemokine signaling, while NPs were enriched
in ribosomal and translational pathways linked to Tn cells (Fig. 4h).
Trajectory analysis of CD8" cytotoxic lineages revealed higher den-
sities of RP cells at later pseudotime points (that is, CD8_Teff_HLA
and CD8_Teff), whereas NPs were enriched at earlier stages (CD8_Tn
and CD8_Tcm_GZMK) (Fig. 4i,j). Cytotoxic markers (NKG7, GZMH and
FGFBP2) peaked at late pseudotimes, associated with RPs, while Tn
markers (CCR7, SELL, TCF7, CD27 and CD28) peaked at early pseudo-
times, associated with NPs (Fig. 4k). This suggests the accumulation
of terminally differentiated, cytotoxic, CD27 CD28 CD8" Teff cells in
RPs,accompanied by a corresponding reductionin the healthy Tnand
Tcm pool necessary for mounting an immunological memory, which
might be associated with poor outcomes.

To further explore this hypothesis, we evaluated associations of
independent cytotoxic and Tn CD8" signatures from the pan-cancer
T cell atlas® to predict outcomes in our myeloma dataset. Elevated
T cell cytotoxicity signature was significantly associated with worse
PFS (P=0.012) (Fig.4land Supplementary Table 4). Conversely, partici-
pants enriched in a Tn-like signature across their T cell compartment
displayed better PFS (P=0.002) (Fig. 4m and Supplementary Table 4).
Exhaustion signature enrichment also showed negative associations
with PFS (P=0.021) (Fig. 4n and Supplementary Table 4). However,
the expression of exhaustion did not correspond to the RP-enriched
CD8_Teff population and seemed to primarily originate from CD8_
Tem, CD8_Teff HLA, CD8_Tem_IFN and CD8_T_adp populations
(Extended DataFig. 4c,d). Thisis further supported by the significant
association of curated putative dysfunctional T cell signature encom-
passing exhaustion and senescence markers (Supplementary Table 4)
with poor survival (P=0.011) (Fig. 40).

We repeated the above T cell compartment analysis using only
samples from participants treated with triplet therapy. While ther-
apy itself cannot impact the baseline immune composition, it can
influence outcomes. These analyses showed enrichment of Tn CD8"
cells and B cells in NPs, whereas RPs on triplet therapy were enriched
for differentiated T cells, including CD8_Teff and CD8_Teff HLA
(Extended DataFig. 5e).

RPs with SR profiles showed an accumulation of apoptotic
CDS8’ T cells and M2 macrophages

Considering the cellular alterations observed across cytogenetic and
progression-based groups, we next sought to determine whether
immunologic alterations remained associated with RPs even in par-
ticipants without HR abnormalities. The analysis of SR-RP participants
(Nparticipants = 19) compared to SR-NP participants (1, ricipants = 40)
exhibited significant enrichment of both CD8_Teff HLA (P=0.008)
and CD8_Teff (P=0.018) populations, along with depletion of CD8"
Tn cells (P=0.007; Fig. 5a). Additionally, these participants also
depicted enrichment of M2 macrophages (P = 0.023) and depletion of
naive B cells (P=0.039) and IFN-stimulated T cell populations
(P<0.038) (Fig. 5a).

Because of the observed trends in reduced B cells paired with the
enrichment of myeloid cellsin RPs (Fig. 4b), we investigated the poten-
tial for altered hematopoiesis within the BMME. DGEA on HSCs revealed
ashift toward myelopoiesis inthe RPs, with overexpression of myeloid
lineage commitment markers, while the NPs exhibited an overexpres-
sion of lymphoid lineage commitment markers, such as SOX4 (Fig. 5b).

Cellular communication analysis depicts IFNy-driven
proinflammatory and immunosuppressive changes in
participants with poor outcomes

Toexplore potential BMME signaling changes associated with cytoge-
neticriskand disease progression, weinvestigatedintercellular commu-
nication patterns, revealing several key pathways in outcome-associated
subpopulations (Fig. 5c and Supplementary Table 6). MHC-1l expres-
sion was enriched in antigen-presenting cells (B cells, M2 mac-
rophages and cDCs), associated with NPs (Fig. 4e), pointing toward
an improved adaptive immune response in these groups. We also
observed increased expression of IFNy in CD8" Teff populations
(CD8_Teff_TNF, CD8_Teff HLA and CD8_Tem; Figs. 2f,g and 5c,d),
CD4" cytotoxic populations (CD4_CTL) and cytomegalovirus (CMV)
adaptive NK cells (NK_adp). Higher IFNy receptor expression was
also observed in the RP-associated immunosuppressive macrophage
cluster (Macro/Mono). Markedly, CD8_Teff HLA cells were associated
with RPsand HR (Figs. 3c and 4f), suggesting that IFNy signaling in the

Fig. 4| Single-cell level alterations in the BMME of MM RPs. a, Stacked bar
chart of mean per-participant cell type proportions at baseline in RP versus

NP participants. Clusters are colored by their major cell type and shaded by
individual clusters. The average proportion of major cell types is shown on the
graph, normalized as a fraction of all cells, excluding doublets. b, Proportions of
T, Band myeloid cells per participant by progression groups (RP, 1, icipants = 67;
NP, participans = 83), calculated from total immune cells. Two-sided P values were
calculated using a linear model adjusting for processing sites. Nonsignificant
Pvalues > 0.05 are not shown. ¢, CD14* monocyte trajectory with differential
abundance results. Arrows indicate lineage paths from immature Neutrophil_
RPS/RPL. Circles represent clusters, with labels adjacent to each center and
size representing the number of cells within a cluster. Colors correspond to the
log odds ratio for RP and NP participants, computed as a fraction of myeloid
cells.d, A volcano plot displaying the differentially expressed genes between
NP and RP participants in CD14" monocytes. The x axis displays the natural log
fold change and the y axis displays the —log,, two-sided BH-adjusted Pvalue.
Significantly differentially expressed genes associated with inflammation

and IFN-Iresponse pathways are shown in red and blue, respectively. e, Abar
plot displaying GSEA for differentially expressed genes shown in d. The x axis
shows the NES, with positive values indicating association with NP-enriched
markers and negative values indicating association with RP-enriched markers.
Pathways are colored by the sign of the NES and shaded by -log,,FDR; those with
BH-adjusted Pvalues < 0.1 were considered significant. f, Box plots displaying
the distribution of CD8" cells (left) and selected significantly enriched T cell
subtypes (right) as a fraction of CD3" T cells. Open circles represent individual
participants. The difference in proportions between RPs (11, icipants = 67) and
NPS (Mpareicipants = 83) was assessed using a linear model (two-sided P value).

g, Avolcano plot displaying the differentially expressed genes between NP and

RP participantsin CD3" T cells. The x axis displays the natural log fold change
and the y axis displays the -log,, two-sided BH-adjusted Pvalue. Select genes
are highlighted and colored on the basis of their associated function. h, Bar plot
displaying GSEA results for the differentially expressed genes showning. The

x axis shows the NES, with positive and negative values indicating association
with the NP-enriched and RP-enriched markers, respectively. The pathways are
colored by the sign of the NES and shaded by the -log,,FDR; those with
BH-adjusted Pvalues < 0.1 were considered significant. i, The trajectory of
CD8" cells along with differential abundance results. Arrows indicate lineage
paths from CD8" Tn cells. Circles represent clusters, with labels shown adjacent
to each center and size representing the number of cells within a cluster.

The lineage highlighted in red corresponds to the trajectory associated

with cytotoxic cells. Colors correspond to the log odds ratio for RP and NP
participants, computed as a fraction of all CD8" T cells.j, A density plot showing
the distribution of cells by pseudotime along the cytotoxicity lineage, from the
original cluster (CD8_Tn, low pseudotime) to differentiated cytotoxic clusters
(high pseudotime). k, Smoothed normalized expression along the cytotoxicity
lineage’s pseudotime for five Tn-associated genes (blue) and five cytotoxicity-
associated genes (red), weighted by Slingshot’s lineage assignment weight.

I-0, Survival plots displaying the relationship between PFS and the participant’s
average cytotoxicity signature (I), Tn signature (m), exhaustion signature (n) or
putative T cell dysfunction signature (o) scores across CD3" T cells. Significance
values were determined using two-sided P values from a Cox proportional
hazards (PH) model. For the survival curves, participants were binned into groups
with ‘high’ (brown) or ‘low’ (blue) expression, with the cutoff determined using
maximally selected rank statistics. In the box plots, the middle bar represents the
median, lower and upper hinges correspond to first and third quartiles and upper
whiskers extend to the largest value no further than1.5x the IQR.
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BME may contribute to inflammatory alterations in the monocytes
of RPs. Notably, the RP-associated cluster (Macro/Mono; Fig. 4c and
Extended DataFig. 5¢c) was also found to express BAG6, an inhibitor of
NK-mediated cytotoxicity in its soluble form, and well-documented
molecules in MM oncogenesis and progression, thrombospondin-1
(THBSI) and a proliferation-inducing ligand (APRIL). In contrast, the
IFN-I-associated monocyte cluster, associated with NP participants
(Fig. 4c and Extended Data Fig. 5c), was found to highly express B
cell-activating factor (BAFF), an essential promoter of B cell survival
and terminal differentiation. Previous studies also reported BAFF
expression associated with IFN-I signaling across multiple diseases™.
BAFF canbind to transmembrane activator and CAML interactor (TACI)
expressed on plasma cells, although it has a much higher affinity to
BAFF-R expressed on the mature B cell populations.

Given that IFNy overexpression in the T cell compartment
correlates with RPs, we further investigated IFNy expression in SR
participants and its relationship to outcomes. SR-RPs also showed sig-
nificantly higher average IFNy expression across their T cell compart-
ment (Fig. 5e), associated with poor outcomes (Fig. 5f). Furthermore,
CD14" monocytes of SR-RPs had significantly higher IFNy receptor (that
is, IFNGR2) expression (Fig. 5g), which was also associated with poor
outcomes (Fig. 5h). These findings appeared to indicate that height-
ened IFNy expression before therapy may be a prognostic indicator
of poor outcomes.

Inasystems biology analysis, we further investigated gene regula-
tory networks (GRNs), particularly focusing on myeloid subpopula-
tions associated with HR and disease progression (for example, CD14"
Mono_IFN) andidentified enrichment of GRNs for IFN regulatory factor
2 (IRF2),IRF7,IRF9 and signal transducer and activator of transcription
1(STAT1) transcription factors (TFs) (Fig. 5i-k, Extended Data Fig. 6
andSupplementary Table 7). These TFs are regulated by IFNa and pro-
mote the transcription of IFNa-stimulated genes, including ISG15
(refs.23,24). Examining the survival association of IRF7 regulon activ-
ity within the myeloid compartment, we observed that participants
with increased IRF7 regulon activity exhibited better outcomes (Cox
proportional hazards (CoxPH) P=0.005; Fig. 5j). Additionally, regula-
tory networks of cell proliferation related to E2F1 and E2F8 TFs were
enriched in the granulocyte-monocyte progenitor (GMP) population
(Fig.5i,k), elevated in RPs (Fig. 5a). Increased E2F8 regulon activity was
linked with poor survival outcomes within the myeloid compartment,
aligning with our previous observation of increased myelopoiesis in
RPs (CoxPH P=0.034; Fig. 5j).

Independent validation of BM immune landscape features that
are predictive of myeloma outcomes

To independently validate immune microenvironment alterations
associated with clinical outcomes, we analyzed an additional 74 sam-
ples from participants with NDMM as a validation cohort (Fig. 6a). This
effort produced high-quality scRNA-seq data comprising approxi-
mately 247,928 cells after integration, clustering and batch correction
(Fig. 6b and Extended Data Fig. 7a). The validation cohort identified
all major immune cell types of BM, with T cells being the most fre-
quent, followed by B cells, myeloid cells and plasma cells (Fig. 6b,c
and Extended Data Fig. 7b-i). Further comparative analysis of cellular
abundances between the validation and discovery cohorts revealed
striking similarities, reinforcing the robustness and reliability of the
validation cohort (Fig. 6d). The validation cohort depicted PFS similar
to the discovery cohort, consisting of a nearly equal number of RPs
(Pparicipants = 29) and NPS (M, ricipanes = 35) (Fig. 6a). According to the
Davies risk definition, the validation cohort contained 34 HR sam-
ples, although cytogenetic abnormalities were mostly restricted
to gains of 1q21 or NSD2 (Fig. 6a and Extended Data Fig. 1b,c). In the
validation cohort, RPs depicted significant enrichment of CD8" Teff
cells (P=0.045), including CD8'HLA" Teff cells (P = 0.036; Fig. 6d),
and reductions inimmature B cells (P < 0.020; Fig. 6d), consistent
with the discovery cohort. We also observed the enrichment of M2
macrophages (P=0.0095), previously observed in the RPs with SR
(Fig. 5a). The enrichment of CD8"HLA" Teff cells (CD8_Teff_ HLA) also
depicted atrend toward poorer OS (P=0.07; Fig. 6e) and PFS (P=0.01;
Fig. 6f), supporting discovery cohort results. Further DGEA depicted
significant overexpression of cytotoxicity-associated markers and
downregulation of Tnmarkersinthe RPs (Fig. 6g). The validation cohort
also showed a shift toward cytotoxic CD8" and Tn cell populations in
RPsand NPs, respectively (Fig. 6h). Additionally, the validation cohort
also confirmed discovery cohort findings, demonstrating higher T cell
cytotoxicity scores (P=0.030, hazard ratio =1.07; Fig. 6i) and putative
dysfunctional scores (P= 0.028, hazard ratio = 1.14; Fig. 6j) with poor
outcomes. These findings underscore the association of terminally
differentiated T cell enrichment with rapid progression of myeloma
and poor outcomes.

Integrating baseline immune signatures with cytogenetic risk
improves our ability to predict outcomes

To test the hypothesis that immune risk is nonparallel to cytogenetic
risk, we aimed to assess the ability of immune clusters or signatures to

Fig. 5| Pathway and systems biology analysis to decipher mechanisms

of poor outcomes in MM. a, Top: differential cell population abundances
stratified by composite cytogenetic risk (HR versus SR), progression (RP versus
NP) and progression within the subsets of SR participants (SR: RP versus NP)
and HR participants (HR: RP versus NP). The color indicates the linear model
coefficient fitted to logit-transformed proportions, with orange indicating
higher abundance in the first group of each comparison and blue indicating
lower abundance. Shapes indicate the two-sided P value for the coefficient, with
circles representing no significant difference, diamonds representing P < 0.05
andsquares representing P < 0.01. Proportions were computed as a fraction of
allimmune cells excluding plasma cells, erythroid cells and doublets. Bottom:
average normalized scores for select immune signatures (Supplementary Table 4)
across the various cell populations. b, Bar graph of differentially enriched
markers within the CD34" HSC population. The log, fold change values are
relative to RPs, with overexpressed genes in orange and downregulated genes
inblue. ¢, Heatmap of intercellular communication depicting key patterns of
outgoing (top) and incoming (bottom) signaling between cell types. All cell
types, including plasma cells, were included, although some populations were
combined to simplify the interpretability of the cell communication analysis
(Supplementary Table 6). Each row corresponds to aligand-receptor pair. The
heatmaps show relative strength of outgoing signals (top; ligand expression)
and the corresponding incoming signals (bottom; receptor expression) by
each celltype.d, Chord diagram indicating the IFNy signaling network in all

cells. Chords are colored by the ‘sender’ cell type (ligand) and point toward the
‘receiver’ cell type (receptor). e-h, Average expression of IFNyin T cells (e,f)

and IFNyR2 in CD14" monocytes (g,h) and their associations with outcome in

SR participants. Box and violin plots (e,g) compare the per-participant average
expression between SR-NP and SR-RP participants, with each dot representing
aparticipant. Pvalues were calculated using a two-sided Wilcoxon rank-sum
test. Inthe box plots, the middle bar represents the median, lower and upper
hinges correspond to first and third quartiles and upper whiskers extend to the
largest value no further than 1.5x the IQR. Kaplan-Meier curves (f,h) display the
association between expression level and PFS, stratified by median expression
(high, above the median; low, below the median). Hazard ratios and two-sided
Pvalues were estimated using CoxPH models. i, Heatmap showing normalized
average AUC scores for transcriptional regulons on selected myeloid
populations. Additional columns display hazard ratios and two-sided Pvalues,
from CoxPH models fitted on average participant AUC scores categorized

into high and low activity using a cutpoint approach. j, Survival plots display
survival associations between regulon activity in the myeloid compartment and
participant outcomes, where high E2F8 regulon expression (bottom) and low
IRF7 regulon expression (top) are associated with poor outcomes. The two-sided
Pvalues from Cox models are shown. k, Feature plots of the per-cell AUC values
for IRF7 (left) and E2F8 (right) TF regulons across key myeloid populations. Blue
indicates low activity (or AUC) and red indicates high activity. The color bar
represents the regulon enrichment score.
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predict disease progressioninaunivariate and multivariable framework
while alsoincluding covariates such as age, sex, stage and cytogenetic
risk. We used abootstrapping approachto ensure model robustness and
used three different statistical methods (elastic net, logistic regression
and Cox models) to validate findings on anindependent cohort (Fig. 7a).

Clinical data alone yielded an area under the curve (AUC) value
of 0.7 in predicting PFS (Fig. 7b,c). Incorporating cytogenetic risk
with clinical variables (stage and demographics) increased the PFS
prediction to 0.73 (Fig. 7b,d). Similarly, the predictive power of any
single immune subcluster combined with clinical variables only mar-
ginally improved prediction (AUC = 0.75; Fig. 7b,e). Iterative feature
selection combining subsets of BMME immune clusters with clinical
covariates and cytogenetics improved the average AUC for predict-
ing PFS (Fig. 7b,f,g). Specifically, combining Immune Atlas clusters,
clinical variables and cytogenetics resulted in AUC values ranging
from 0.75 (any given subcluster) to 0.96 (all subclusters), contingent
onthe number of subclusters considered during modeling (Fig. 7b,g).
This substantial increase in AUC by combining clinical and immune
features (Extended Data Fig. 8a—c) further highlights the importance
of the BMME. Although marginal differences in AUC were observed
among individual cell clusters alone, integrative models showcased
anotable advantage over simpler models (Extended Data Fig. 8a-c
and Supplementary Table 8). Lastly, we identified the most relevant
11subclusters selected using an elbow test on predictive power versus
number of clusters, resulting inamodel with high precisionand recall
(AUC =0.81; Fig. 7b,f,h). This model for stratifying participantsinto pro-
gressors (Ps) and NPs (Fig. 7b,f,h) included differentiated T cytotoxic
populations (CD8_Teff and CD8_Teff_HLA) along with inflammatory
myeloid populations (CD14* Mono_Prolnflam) (Fig. 7h).

Next, we investigated the predictive ability of immune cell pop-
ulations toward OS. Using the same approach as for PFS described
above, we identified that OS was predicted at lower true positive rates
than PFS (Extended Data Fig. 8d). Furthermore, cytogenetics pro-
vided little improvement over models using simple demographics
(Extended Data Fig. 8e,f). Yet, integrative models, including immune
subclusters,improved the predictions slightly with values around 0.7,
althoughnot as strongly as observed for PFS (Extended Data Fig. 8g,h).
Consistent with the PFS model, we identified populations significantly
associated with OS that included HSCs, T cells and megakaryocytes
(Extended Data Fig. 8i).

Tofurtherindependently validate our finding of immune BM clus-
ters’importanceinimproving PFS and OS prediction, we investigated
our validation cohort of 74 participants with NDMM. The investigation

ofkey clinical variables and cell proportions revealed that ASCT status
was a strong confounder of PFS and OS outcomes in the validation
cohort. To remove the confounding effects of ASCT, we modeled PFS
and OS with and without this confounder to investigate this effect and
rule out that our models were biased for validation by notincluding it
in the prediction models for PFS (Fig. 7i and Extended Data Fig. 8j-0)
and OS (Extended DataFig. 8p-t). The PFS prediction model excluding
ASCT status achieved an AUC of 0.80 (Fig. 7i and Extended Data Fig. 8n)
by incorporating key immune clusters, representing a significant
improvement over the combined prediction based on age, ISS and
cytogenetics alone’®. This underscores the synergy and critical role of
immune clusters in predicting myeloma progression.

Integrating the minimal (1 g.;s = 11) immune subset signature
fromthe discovery cohortto our validation cohort exceeded expec-
tations by revealing that the prediction of PFS and OS increased
to AUC values of 0.94 (Fig. 7j and Extended Data Fig. 80) and 0.73
(Extended Data Fig. 8r,t), respectively. These results clearly show
the potential biases of clinical covariates and demonstrate that
integrative scores using clinical data and genomic and immune
cell populations can potentially enhance risk stratification and
outcome prediction.

Lastly, to further investigate the robustness of the signature
against other proposed cytogenetic risk criteria, we investigated
whether immune populations could add to the prognostic capabil-
ity of the recently proposed International Myeloma Working Group
(IMWG) criteria as an alternative to the previously used Davies risk
definition” (Extended Data Fig. 9a-jand Supplementary Table1). Top
predictive subclustersincluded many of the sameimmune populations,
including CD8'HLA" T cells and CD8" Teff cells (Extended Data Fig. 9h).
Integrating these immune populations with the clinical and cytogenetic
variables outlined by the IMWG significantly improved the predictive
AUC from 0.73 (Extended DataFig. 9d) to 0.80 (Extended Data Fig. 9f,i).
This finding further highlights the unbiased and critical impor-
tance of the immune microenvironment in accurately predicting
myeloma progression.

Discussion

Inthis study, we generated acomprehensive single-cell Immune Atlas
of the myeloma BMME by profiling -1.4 million cells, capturing diverse
cell states, including rare subtypes, such as cytotoxic CD4" T cells,
mast cells, HSCs and fibroblasts. This enabled deciphering BMME
variations among participants with diverse risk profiles and outcomes;
notably, these participants were not treated with recently approved

Fig. 6 | Terminally differentiated and senescent T cells predict poor outcomes
inanindependent validation cohort of 74 participants. a, Characteristics of
the validation cohort. Left: scRNA-seq analysis on CD138™ BM of 74 participants
with NDMM yielded 247,928 high-quality cells. Middle: PFS curves comparing the
discovery (gray) and validation (red) cohorts. Dashed lines indicate the median
survival time for each cohort. The adjacent box plot indicates the number of

RPs and NPs in the validation cohort. Right: number of participants from the
validation cohort with different HR abnormalities per the Davies risk definition.
prob., probability. b, UMAP embedding of 247,928 CD138” BMME cells from the
validation cohort (Fig. 2a). Major cell types are shown in consistent colors with
the discovery cohort, with shades representing different cell states and subtypes.
¢, Correlation of cellular abundances between discovery and validation cohorts.
Points represent individual cell types and subtypes, with colors corresponding to
the Kendall correlation coefficient. The shaded region represents the 95% CI.

d, Top: differential abundance analysis of RPs vs NPs in the validation cohort.
Colorsindicate the log odds ratio derived from alinear model on logit-
transformed proportions, adjusting for the study site, with orange indicating
higher abundance in RP and blue indicating lower abundance. Shapes indicate
the two-sided Pvalue for the coefficient, with circles representing no significant
difference, diamonds representing P < 0.05 and squares representing P < 0.01.
Proportions were estimated as a fraction of allimmune cells. Bottom: average
normalized signature scores for selectimmune signatures (Supplementary

Table 4) across immune populations. e,f, Survival analysis of CD8" Teff HLA" cell
abundance, as afraction of all CD8" cells, for OS (e; P= 0.07, log-rank test) and
PFS (f; P=0.011, log-rank test). g, Volcano plot of the differentially expressed
genesacross CD3" T cells in the validation cohort between RPs (right) and NPs
(left). The x axis shows the batch-corrected log, fold change, with positive values
corresponding to higher expression in RP participants and negative values
corresponding to higher expression in NP participants. The y axis shows the
-log,, BH-adjusted Pvalue based on a two-sided test using a linear model fit to
log-normalized expression. Vertical dashed lines mark the log, fold change + 0.1
and the horizontal dashed line marks adjusted P=1x 107, Certain genes are
highlighted on the basis of their functional role (red, cytotoxic or cytolytic; blue,
IFN-I; green, Tn cell; yellow, stress). h, Pseudotime trajectory of CD8" T cells, with
arrowsindicating the paths along the trajectory originating at CD8" Tn cells.
Circles represent clusters and colors indicate the log odds ratio of proportion as
afraction of CD8' T cells between RP and NP participants, with orange showing
higher abundance in RP and blue showing higher abundance in NP. ij, Survival
plots of PFS associated with the participant’s average cytotoxicity signature
score (i) or average dysfunction signature score (j) across all CD3" T cells. CoxPH
models were fit on continuous signature scores, with hazard ratios and two-sided
Pvalues reported. For the survival curves, participants were binned into groups
with high or low expression, with the cutoff determined using maximally selected
rank statistics.
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immunotherapies, suggesting that the immune system has a broad,
treatment-independent role in myeloma outcomes.

The BMME analysis by stratifying participants on the basis of indi-
vidual HR abnormalities emphasized the heterogeneous impact of T,
myeloid and B cell compartments. Participants with HR abnormalities
except17pl3 deletion demonstrated areductioninIFN-stimulated cell
populations and expression. Interestingly, participants with 17p13
deletion had universal elevation of IFN-I-associated genes in T cells,
other immune cells and malignant plasma cells. Acute IFN-I stimula-
tionis crucial for mounting an effective antitumor immune response®
through the activation of pathways such as cGAS-STING” but lesions
such as 1g21 gain or amplification may block this, enabling immune
evasion and progression?. Conversely, as IFN-I's apoptotic and senes-
cent effects often depend on p53 (refs. 29,30), del(17p13) may allow
tumors to persist despite IFN-I overactivation, with chronic activity
potentially impairing T cells®. Ultimately, these data underscore the
complexinteractions between HR cytogenetic alterations and critical
antitumor pathways such as IFN-I, emphasizing the need to balance
IFN-I signaling for therapeutic benefit. Agents such as bortezomib
capable of acutely activating the IFN-I response might synergize with
immunotherapies to boost antitumor response in persons with 1q21
gain or NSD2 abnormalities®. Strategies to alleviate immune impair-
ment from chronic IFN-I signaling, such as checkpoint inhibitors tar-
geting exhaustion markers (forexample, PD1and LAG3), could restore
T cell function and counteract immune suppression in persons with
17p13 deletion. Kawano et al. already showed that IFNAR1 inhibition
resultsin MM-driven Treg expansion and activation®, thereby reducing
immunosuppressive function and myeloma progression.

The T cellcompartment of RPs displayed anaccumulation of termi-
nally differentiated CD8" Teff cells, specifically late-activated cytotoxic
cells, with reduced Tn populations (Fig. 7k). This state is sometimes
referred to asimmunosenescence, with low levels of cytotoxicity, inhib-
itory KIR and KLRGI genes and alack of costimulatory receptors CD27
and CD28, resulting in impaired antigen-mediated proliferation** %,
Additionally, studies have indicated that the immunomodulatory
effects of drugs such as IMiDs may be through the costimulatory CD28*
pathway®’; therefore, this population may show a diminished response
tostandard first-line therapies, potentially leading to poorer outcomes.
Depletion of the Tn pool can be driven both by thymic involution*>* or
by antigenic pressure driven from either myelomacells or other chronic
infections such as CMV or Epstein-Barr virus****. Impairment of Tn

cellsreduces the TCRrepertoire clonality®***, which is typically associ-

ated with worse outcomes in various malignancies***. Additionally,
accumulation of these differentiated T cell populations contributes
to the inflammatory microenvironment through the production of
cytokines such as IFNy, which we observed highly expressed in the
HLADR'CD28 populationassociated withboth HR and poor outcomes.
Unlike exhaustion, it is not well understood whether this senescent
state can be reversed, although some studies have indicated that it
may be possible*®. Given that immune therapies could aggravate the
Tcellimbalance, it may be better to use more targeted therapies, such
as bispecific antibodies and CAR-T cells, as the first line of therapy,
rather than only inthe relapsed setting.

Inadditionto T cell alterations, RPs displayed a shift toward mye-
lopoiesisinthe BM, reflected by general depletion of the B cell compart-
ment, including the BM-native immature populations, compensated
for by the enrichment of the myeloid compartment. Myelopoiesis in
the BM can be driven by stress or inflammation that drives HSCs to
differentiate toward myeloid lineages at a higher frequency*. Myeloid
cells are also a major source of inflammatory cytokines promoting
tumor survival, immunosuppression or angiogenesis, as observed in
RPs, displaying enrichment of senescent-associated secretory profile
factors, including IL-8, CCL3 or IL-13°°. The increased expression of
these proinflammatory andimmunomodulatory molecules aligns with
previous findings, whichidentified neutrophils as major mediators of
cytokine and chemokine signaling promoting the inflammatory BMME
inNDMM®' (Extended Data Fig. 9k). The enrichment of these inflamma-
toryfactors may berelated to IFNy produced by the expanded CD8* Teff
cell populations, as the inflamed myeloid cellsboth express the recep-
tor IFNGR2 and the TF /RF1, which is associated with IFNy activity*.

Cell-cell communicationanalysisidentified both BAFF (TNFSF13B)
and APRIL (TNFSF13) expression in the myeloid compartment. BAFF
expression was primarily associated with myeloid populations
enriched in NPs such as IFN-associated monocytes. BAFF can bind to
TAClexpressed on plasma cells, although it has amuch higher affinity to
BAFF-R expressed in mature B cell populations to promote their differ-
entiation and survival. Conversely, APRIL was most strongly associated
with the Macro/Mono population enriched in RPs. APRIL is known to
bind to TACI (TNFRSF13B) on malignant plasmacells, promoting their
survival and MM progression®***,

Cytogenetics alone demonstrated positive predictive capa-
bilities, yet integrating information from the BMME could enhance

Fig. 7| Prediction of MM progression by integration of cytogenetic risk along
with immune signatures. a, Schematic of variables tested (immune signatures,
cytogenetics and clinical variables (covariates)) and the three regression
strategies used (elastic net, logistic regression and Cox), followed by bootstrap
validation used for model selection. b, Receiver operating characteristic curves
for progression prediction models based on single clusters, clinical variables
and cytogenetics or Immune Atlas variables alone and in combination. Curves
are colored by model. The labels indicate subclusters (SubC) and covariates
(CoV), including age, batch, site, ISS and cytogenetic. c-e, Kaplan-Meier
curves showing the separation of participants by predicted PFS based on

age, ISS stage and batch (c), cytogenetics, age, ISS stage and batch (d) and
Immune Atlas signatures, age, ISS stage and batch (e). f,g, Kaplan-Meier

curves showing the separation of participants when cytogenetic risk scores

are combined with the best 11 predictive Immune Atlas subclusters (f) or with

all 83 subclusters (g). h, Importance of immune subclusters for predicting

the progression. The clusters with better and poor MM outcomes are shown
with blue and red colors, respectively. The red dashed line marks the Pvalue
threshold of 0.1 from the ANOVA Wald chi-squared test. i, PFS predictive model
with 11 predictive immune clusters, excluding ASCT, in the discovery cohort
stratifying participants by high versus low risk (AUC = 0.80). j, Validation of

the PFS predictive model based on 11immune clusters and clinical covariates
(excluding ASCT) on anindependent validation cohort of 74 participants

with NDMM. The model demonstrates excellent performance in stratifying
participants at higher risk of progression from a low-risk category, achieving

an AUC of 0.94. All survival curves display the two-sided P value from a log-
rank test. k, Summary of the key cellular subtypes and signaling pathways
comprising the MM BMME and their association with participant outcomes.
Within the aging BM, a state of chronic inflammation, known as ‘inflammaging’,
resultsin altered lymphoid and myeloid cell populations, enabling immune
escape of malignant plasma cells. Within the T cell compartment, participants
with MM showing poor outcomes exhibit a shift toward immunosenescent

and late-activated CD8" T cells, producing type 2 interferon (IFN-II) that drives
senescence-associated and immunosuppressive phenotypes in myeloid
compartment. In contrast, participants with MM showing better outcomes
display highly proliferative Tn and Tcm CD8" subsets, in addition to enriched
Th populations driven by increased MHC-Il antigen presentation among
myeloid cells. T celland myeloid populations in these participants appear

to be stimulated by IFN-I, in contrast to participants with poor outcomes
exhibiting enrichment of IFN-11 signaling. This difference in IFN stimulation
appears to be linked to participant outcomes, in part, through the differential
expression of BAFF by IFN-I-stimulated monocytes and APRIL by IFN-II-
stimulated monocytes. Notably, BAFF preferentially binds to mature B cells

to promote survival, potentially enhancing B cell-mediated immunity and
leading to improved outcomes. Conversely, APRIL has been shown to inhibit
memory B cell function and promote malignant plasma cell survival. This
dysregulation s further highlighted in the shift from B cell development toward
increased myelopoiesis in participants with poor outcomes. k was created with
BioRender.com.
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stratification and guide optimal therapeutic selection. We observed
that the prevalence of differentiated BMME immune cell populations
could predict outcomes with good accuracy in our cohort regard-
less of cytogenetics. Importantly, combining tumor cytogenetics
and immune signatures can significantly improve the accuracy in
stratifying myeloma outcomes. Participants withimmunosenescent
and inflamed BMME might have poor overall or event-free survival
evenwithafavorable genetic makeup. Therefore, we posit that future
treatments targeting theimmune microenvironment could improve
outcomes of myeloma. This observation can elevate the importance
of capturing the BMME as a prognostic marker for MM. Increasing the
studies capturing such information at the cohort scale could enable
us to establish a new generation of comprehensive risk scores or
the derivation of simplified lower-cost assays that focus only on the
most informative populations. Furthermore, these data may iden-
tify ancillary therapeutic targets that improve the efficacy of cur-
rent treatment strategies and may contribute to rationally designed,
personalized treatment regimens based on both the tumor and the
immune microenvironment.

This study created an extensive and comprehensive resource
to map the granular cellular landscape of myeloma from baseline
samples. However, the study had multiple limitations, including only
studying gene expression, and did notinclude any proteomic or func-
tional profiling. Additionally, the study lacked information on T cell
repertoire profiling, whichis crucial for understanding the expansion
of antitumor T cell clones. This expansion is particularly important
when analyzing longitudinal samples to ascertain treatment responses
rather than relying solely on baseline NDMM samples profiled in this
study. Future comparison of the findings herein against age-matched,
non-MM biopsies could inform how aging contributes to alterations
inthe BMME.

This study highlights the importance of the immune landscape
in better stratification of persons with myeloma in addition to tumor
alterations. This paradigm can enable us to better understand the
combinations of factors that influence outcomes in MM and move
closer to the goal of optimizing therapy for each individual to ensure
the best outcomes.

Methods

Ethics approval and participant consent

All samples for the study were obtained from the MMRF CoMMpass
clinicaltrial (NCT01454297). Procedures involving human participants
aspartofthis trial were performed accordingto the ethical standards of
the MMRF research committee. Writteninformed consent was obtained
from participants for the collection and analysis of samples and clini-
cal information by the MMRF. The institutional review board at each
participating medical center approved the study protocol. The list of
participating institutes that approved the study protocol is available
from ClinicalTrials.gov (NCT01454297).

Experimental model and human subject details

A total of 337 CD138” MM BM mononuclear cell samples were col-
lected from participants with MM enrolled in the MMRF CoMMpass
study (NCT01454297) and profiled in the discovery (n=263) and
validation (n = 74) phases. Participants enrolled in the study were
monitored through quarterly checkins for up to 8 years following
initial disease diagnosis. All participants were required to be eligi-
ble for either standard triplet therapy (IMiD, Pl and glucocorticoid)
or doublet therapy. Most participants received triplet therapy in
their first line of therapy. Participants’ information is available in
Supplementary Table 3 for the discovery and validation cohorts.
Samples were acquired before therapy (baseline) and after therapy
(relapse or remission) and then processed at four institutions: Emory
University, Mayo Clinic Rochester, Icahn School of Medicine at Mount
Sinai and Washington University.

CD138  cellisolation and cryopreservation of cell samples

BM aspirates from the MM Research Consortium tissue bank were
separated into CD138" (myeloma cells) and CD138™ (immune, BM cells)
fractions using immunomagnetic cell selection targeting CD138 sur-
face expression (automated RoboSep and manual EasySep from Stem-
Cell Technologies). Before bead-based separation, each sample was
assessed for malignant plasmacell levels using flow cytometry. Briefly,
the CD138 cells were centrifuged at 400g for 5 min. The resulting cell
pellet was resuspended in freezing medium consisting of 90% fetal calf
serum and 10% DMSO at a concentration of 5-30 million cells per ml
in multiple aliquots. Cell concentrations and aliquot locations were
documented before storing in liquid nitrogen for future studies.

scRNA-seq sample preparation, library construction and
sequencing

To generate high-quality and comparable single-cell data, we devel-
oped a highly detailed single-cell protocol on the basis of our pilot
studies™™"* forimplementation across centers and performed profil-
ing using single-cell 3’ profiling (10x Genomics). Briefly for scRNA-seq,
aliquots of the CD138” BMME samples were thawed quickly in 37 °C
water bath. Cells were washed with a warm medium and pelleted by
spinning at 370g for 5 min at 4 °C. The cell pellet was resuspended
inice-cold PBS with 1% BSA and cell viability was measured. If cell
viability was <90%, dead cell removal was performed using the dead
cell removal kit (Miltenyi Biotec). The cell pellet was resuspended
in 100 pl of dead cell removal microbead solution and incubated at
roomtemperature for 15 min. Magnetic removal of labeled dead cells
was performed using the MS column or autoMACS Pro separator. The
eluted supernatant containing the live cells was pelleted by centrifuga-
tionat370gfor 5 minat4 °C. Cells were finally resuspended inice-cold
PBS containing 1.0% BSA. To assess for potential batch effects between
sequencing runs, a subset of samples were spiked in with approxi-
mately 100-150 cells from a murine sarcoma line (NIH/3t3; American
Type Culture Collection (ATCC), CRL-1658), as described below. The
cellswereloaded onto the 10x Genomics Chromium Controller accord-
ing tothe manufacturer’sinstructions, followed by reverse transcrip-
tion (RT)-PCR, complementary DNA (cDNA) amplification and library
preparation using the Chromium Next-GEM single-cell 3’ GEM, library
and gel bead kit version 2.1. Briefly, approximately 8,000 cells were
partitioned into nanoliter droplets to achieve single-cell resolution
for a maximum of 5,000 individual cells per sample. The resulting
cDNA was tagged withacommon 16-nt cell barcode and 10-nt unique
molecular identifier (UMI) during the RT reaction. Full-length cDNA
from poly(A) mRNA transcripts was enzymatically fragmented and
size-selected to optimize the cDNA ampliconsize (-400 bp) for library
construction as per recommendations from 10x Genomics. The con-
centration of the single-cell library was accurately determined through
gPCR (Kapa Biosystems) to produce cluster counts appropriate for the
paired-end sequencing using NovaSeq 6000 platforms (Illumina). The
sequencing data were generated by targeting 25,000-50,000 reads
per cell, which provided gene expression profiles of 1,000-4,000
transcripts per cell.

NIH/3t3 spike-in and filtering for downstream analyses

In some samples, cells from murine sarcoma lines (NIH/3t3; ATCC
CRL-1658) were spiked into the final human single-cell suspension to
qualitatively assess batch effects across centers. The vial of NIH/3t3
cells was thawed by gentle agitationin a37 °C water bath. Contents of
the vial were transferred to a 1.5-ml sterile tube and spun at approxi-
mately 400g for 4 min. The supernatant was discarded; the resulting
pellet was washed with 1x PBS and then spun down at the same speed.
After discarding PBS, the pellet was resuspended in complete medium,
DMEM (ATCC, 30-2002) supplemented with 10% FBS and 1% penicil-
lin-streptomycin. Cell viability was assessed and kept onice while the
participant’s sample was prepared. After cells from the participant’s
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BM aspirate were resuspended, approximately 100-150 NIH/3t3 cells
were spiked in, targeting a1:50 ratio of spike-in to human cells.

To identify the murine sarcoma spike-in cells in the scRNA-seq
data, we additionally mapped the raw data to the 2020A combined
human (GRCh38) and mouse (mm10) reference genome provided by
10x Genomics using Cell Ranger (version 6.0.1; 10x Genomics) and
analyzed the resulting datausing Seurat. Clusters inwhich atleast 80%
of cells had fewer than 95% of reads mapped to the human reference
genome were identified as mm10 spike-in cell lines. These populations
were assessed to see whether variance in alignmentbetween processing
centers or between subsequent sequencing runs within the same center
would resultin sample-specific or processing-center-specific popula-
tions for the spike-in cell line to determine whether batch correction
would be required. Cell barcodes corresponding to NIH/3t3 spike-in
cells were removed from the final merged object after alignment to
the 10x Genomics 2020A GRCh38 reference genome before calculat-
ing highly variable genes or clusters. Two samples with over 65% of
cellsbeingidentified as NIH/3t3 spike-in cells were excluded from the
integrated object and subsequent downstream analyses.

scRNA-seq genome alignment and quality control

For the analysis of scRNA-seq samples, Cell Ranger (version 6.0.1;10x
Genomics) was used for demultiplexing sequence data into FASTQ
files, aligning reads to the human genome (GRCh38) and generating
gene-by-cell UMI count matrices. Empty droplets were removed using
DropletUtils® (version 1.14.2) (false discovery rate (FDR) < 0.001).
Ambient RNA was removed using CellBender*® (version 0.3.0) (false
positive rate = 0.01). For quality control, cells with <1,000 UMl reads,
<200 unique genes or >20% of UMIs mapped to mitochondrial genes
were filtered out using Seurat (version 4.3). Harmony*’ (version 0.1)
was implemented to mitigate batch effects from processing sites and
shipment batches in the resulting cell clusters and embeddings. For
a small subset of downstream analyses that directly operate on the
count matrix and do notsupport controlling for abatch covariate, such
as CellChat® or SCENIC®, a corrected count matrix was generated as
described below.

Batch-corrected count matrices for GRN and cellular
communication analysis

Batch effect estimation. First, the Poisson Pearson residuals were
computed for each gene across all cells. Genes with zero UMI counts
across all cells were excluded from further steps. For the remaining
genes, the proportion of variance explained by batch in the Pearson
residuals was estimated using the R? from a linear regression model.
Genes where the batch explained less than 1% of the variance were
removed to avoid overcorrection.

Batch-corrected counts. The reference count distribution for each
gene affected by batch was modeled as either Poisson (when the mean
was equal to the variance) or negative binomial. The Poisson parameter
was estimated using the maximum-likelihood estimator, while the neg-
ative binomial mean and dispersion parameters were estimated using
agamma Poisson generalized linear model. The batch correction was
performed in two steps: (1) scaling and centering the Pearson residu-
alsusing the batch-level meansands.d. to account for the differences
betweenbatchesand (2) transforming the standardized Pearsonresidu-
alsonto the probability scale using the empirical distribution function
and thenthebatch-corrected counts using the quantile function of the
reference Poisson or negative binomial distribution. A pseudocount of
landthe original zeros observed in the uncorrected UMI counts were
restored to preserve the observed sparsity.

Clustering and cell annotation
Following the removal of NIH/3t3 spike-in cells as described previ-
ously, raw counts were log-normalized (scale factor =10,000) using

Seurat®® (version 4.3). The first 25 principal components derived from
principal component analysis were computed from the top 3,000
variable genes to reduce data dimensionality. Harmony was applied
to these principal components to generate batch-corrected embed-
dings, where each combination of processing center and shipment
batch was considered an independent variable. To cluster cells of
similar transcriptome profile, Louvain clustering was performed on the
batch-corrected Harmony embeddings using Seurat’s ‘FindClusters’
function. Clusters were visualized using uniform manifold approxima-
tionand projection (UMAP). Clusters were aggregated into five major
connected components called compartments based on their separa-
bility on the UMAP. To annotate these compartments, a combination
of SingleR® and cell-type-specific or subtype-specific marker expres-
sion was used. The identified compartments included ‘“T/NK’ (T cells
and NK cells), ‘B-Ery’ (B cells, CD34* populations and erythroblasts),
‘myeloid’ (monocytes, neutrophils and DCs), ‘plasma’ (plasma cells)
and ‘Ery’ (erythrocytes). A small independent cluster of fibroblasts
(946 cells, discovery cohort) was observed in the initial UMAP and was
notincluded in any compartment.

More precise annotation of individual cell compartments was
performed separately by repeating the above process oneach compart-
ment, leveraging variable genes specific to each compartment. Because
ofthe highly participant-specific nature of myelomapopulations, batch
correction in the plasma compartment was performed per aliquot
instead of per batch. Each cluster was manually annotated on the basis
of the expression of canonical markers or top genes of the clusters.
While annotating cells, if a possible subset was identified withinagiven
cluster on the basis of marker expression, further subclustering was
performed specific to that cluster using the same procedure. Multiple
resolutions were assessed, with the final subclustering used being the
result thatisolated the subpopulation of interest while minimizing the
formation of minor or participant-specific clusters.

Validation cohort data processing and cell annotation label
transfer

The validation cohort samples (n=74) were processed and
quality-controlled using the same procedures applied to the discovery
cohortdescribed above. The discovery and validation cohort samples
were then merged into a single dataset using Seurat’s merge function
for batch correction and annotation. Harmony was applied to cor-
rect batch effects while preserving shared biological variation. The
resulting merged dataset was used for clustering and to derive UMAP
embeddings. Subclustersin the validation cohort (n = 74) were inferred
using the discovery cohort (n=263) as the reference. Label transfer
was performed using a k-nearest neighbor (kNN) approach (k=1) on
the basis of UMAP embeddings from the merged dataset (n =337).
For each cell in the validation cohort, the label of its single nearest
neighbor in the discovery cohort was transferred. The FNN package®
(version 1.1.4) was used to implement the kNN search.

Single-cell mutation mapping and copy-number variation
inference

Tobetter understand tumor heterogeneity and malignancy of plasma
cell populations, we profiled mutations and copy-number changes
of plasma cells. First, we used a mutation mapping strategy to detect
mutations within each cell by looking for reads supporting the refer-
enceorvariant alleles at variant sites inmapped reads from scRNA-seq
BAM files. This was achieved by leveraging high-confidence somatic
mutations derived from whole-exome sequencing data from the
same participant. The code for mutation mapping is available from
GitHub (https://github.com/ding-lab/10Xmapping). Furthermore,
we used inferCNV (version 0.8.2; https://github.com/broadinstitute/
inferCNV) with default parameters to identify sample-level chromo-
somal copy-number variations of plasma cells, using theimmune cells
as reference normal set.
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Doublet detection

For the discovery cohort, doublets were identified by flagging clusters
with high doublet proportions as predicted using DoubletFinder®®,
Scrublet® (version 0.2.3) and Pegasus (version 1.8.1; https://github.
com/lilab-bcb/pegasus). Scrublet was used to detect doublets
with the expected doublet rate set at 0.06 and thresholded at 0.2.
Doublet-enriched clusters, characterized by at least two methods
(FDR < 0.05, Fisher’s exact test), were manually reviewed and marked
as doublets accordingly. Characteristics considered when reviewing
doublet-enriched clustersinclude the simultaneous, high expression of
canonical markers from unrelated lineages (for example, T cell markers
CD3,CD8A and GZMK and myeloid markers LYZ, CST3and CD14) or UMI
counts disproportionately highrelative to similar cell types. A total of
17 cellclusters (n = 74,282) were flagged as doublets and were omitted
from downstream differential expression, abundance and trajectory
analysis. Inthe validation cohort, cellsmapped to doublet populations
were considered doublets and excluded from downstream analysis.

Differential expression among cell types and clinical groups
Differential expression analysis was performed using linear modeling
(asimplemented in limma®) R packages to identify markers enriched
in each population, or between clinical groups of interest. Models
were adjusted for technical covariates, such as processing site and
batch. Significance was determined using moderated ¢-test statistics
onthelog-normalized expression. Pvalues were adjusted for multiple
comparisons using Benjamini-Hochberg (BH) correction.

Differential abundance of cell types and subtypes

Differential abundance was performed using limma by fitting alinear
model tologit-transformed cell proportions across individual partici-
pantsamples. The distribution of logit-transformed proportions was
assumed to be normal but this was not formally tested. Proportions
were computed as a fraction of a given set of cell types, as described
by therelevant figures. Proportions of nonmalignant cells refer to cell
populations other than plasmacells. Proportions ofimmune cells refer
to nonerythroid and nonmalignant plasma populations. All models
were adjusted accordingto the processingsite. Significance was deter-
mined using amoderated t-test on the logit-transformed proportions.
The coefficient of the model represents the log odds ratio between
the two groups after adjusting for other confounding features. The
logit-transformed proportions were computed using the car package®®
(version3.1) with default parameters and the difference was considered
statistically significantif P < 0.05.

Participant stratification based on time interval to disease
progression

Participants in the CoMMpass study had regular 3-month checkins in
which clinical parameters were evaluated following therapy. The day of
disease progression was identified using standard IMWG criteria. Pro-
gression datausedin this study were derived from the IA22 CoMMpass
clinical metadatarelease. Participants were categorized into discrete
progression groups on the basis of their PFS and the duration of time
the participant was enrolled in the study. The extreme categories of RP
and NP used cutoffs matching those of our pilot study’’. RPs were those
withaprogression event within 18 months of therapy (PFS <18 months).
NPs included those who had no progression event for at least 4 years
following therapy (PFS > 4 years). Ps were those who had adocumented
progression event between 18 months and 4 years (PFS > 18 months,
PFS < 4 years). Incomplete (Inc) participants were those who exited
the study before 4 years of disease diagnosis without experiencing a
progression event.

Cytogenetic risk-based stratification of participant samples
The cytogenetic risk categorization was defined using translocation
dataor copy-number dataderived from CD138" WGS results includedin

thelA21 CoMMpass metadatarelease. Thresholds for calling mutation
eventsinthe MMRF CoMMpass dataare based on the work by Skerget
etal." HR participants were defined with one of the six following cytoge-
netic events: del17p13, t(14;16)[MAF], t(8;14)[MAFA], t(14;20)[MAFB],
t(4;14)[WHSCI/MMSET/NSD2] and 1q gain. This extends the definition
proposed by Skerget et al. by incorporating 1q gain. Participants with
none of these six events were considered SR. Participants with partial
mutation data, such as having only translocation or only copy-number
data, could be classified as HR if an HR mutation was present in the
available data; otherwise, these participants were excluded from down-
stream analyses involving risk-based stratification.

Additionally, we also used the revised HR definition proposed by
the International Society of Myeloma (IMS) and IMWG for exploring
immuneassociations. Therevised IMSrisk definition relies on the pres-
ence of one of the following cytogenetics abnormalities: (1) del(17p),
with a cutoff of >20% clonal fraction, and/or TP53 mutation; (2) an
IgH translocationincluding t(4;14), t(14;16) or t(14;20) along with +1q
and/or del(1p); or (3) monoallelic del(1p32) along with +1q or biallelic
del(1p32)* (Supplementary Table1).

Furthermore, we explored the association of APOBEC-induced
mutational score withBM MM immune profile. The enrichment scores
were computed using R package maftools®’. Briefly, the enrichment
scores are computed as aratio between the number of C>T transitions
occurring within a TCW motif over all the C>T transitions in a given
sample and total background cytosines and TCW motifs within a20-bp
window of mutated bases.

Additionally, we obtained chromothripsis events for participants
in this cohort fromaprior study by Rustad et al.®®

Prediction of participant progression based onimmune cell
abundances, cytogenetics and demographics

To assess the progression prediction capability of the immune signa-
tures alone and in combination with clinical variables, we developed
and evaluated multiple classifiers. We evaluated the predictive power
of clusters containing cells from at least 50% of samples, resulting in
the usage of 83 subclusters. Subsequently, the cell frequencies of these
subclusters were used to construct both univariate and multivariate
models applying three distinct methods: Cox regression, logistic linear
regression (LRM) and elastic net regression. Internal validation using
bootstrap was used to test the robustness of the results.

For the elastic net regression models, a sensitivity analysis of the
coefficients was performed to facilitate feature selection and the iden-
tification of pertinent features. Likewise, features were selected from
LRM and Cox models using P-value filtering. Our modeling approach
was designed to assess individual or multiple subclusters, integrated
with additional variables such as age, sex, disease stage (ISS) and the
cytogenetic risk descriptor mentioned earlier.

To ensure the robustness of our models, a bootstrap validation
approach was implemented, yielding bias-corrected indices specific
toeach model type. Model performance metrics, including the Somers
index (Dxy) and diagnostic statistics were computed using Harrel’s rms
R package®. The R packages, glmnet’, survival” and rms®’ were used
for identifying and testing predictions of disease progression. Visu-
alization was carried out using R packages such as ggplot, tidyverse,
pheatmap, survminer and gtsummary.

Cell transition trajectory analysis

Pseudotemporal ordering of cells was performed using the Slingshot
R package’. Cells with a known biological lineage were isolated from
all other populations (for example, CD8" T cells) and doublet and
mitochondrial-enriched populations were excluded. New variable
features and batch-corrected embedding components were com-
puted as described above. Slingshot was performed on the first 25
batch-corrected harmony embeddings. If an identified progenitor or
less-differentiated population was detected through annotation, this
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cluster was designated as the ‘start cluster’ for trajectory analysis. Pseu-
dotimes for clusters, representing the distance along the trajectory
fromthe starting cluster, were calculated using the Slingshot package.

Survival analysis

The participants were categorized on the basis of clinical character-
istics and risk groups. To analyze survival outcomes, we calculated
the probabilities for either PFS or OS and generated Kaplan-Meier
curves using the survival” (version 3.2.7) and survminer” (version
0.4.9) packages in R. The PFS and OS data were derived from the IA22
CoMMpeass clinical metadata release. Participants who left the study
before any follow-up appointments or participants with large delays
inthe start of therapy from theinitial baseline visit were excluded from
survival analysis. CoxPH models were used to determine the clinical
characteristics that had the most significantand independentimpact
onparticipantsurvival. The survival curves based on the CD8 TeffHLA"
abundance were based on a CoxPH model regressing the OS on the Pear-
sonresidualsfromalinear regression model with processing site asthe
covariate. The optimal cutoff to separate the participants at baseline
inlow-expression and high-expression groups was determined using
maximally selected rank statistics implemented in the surv_cutpoint
function from the survminer package”.

Pathway activity analysis and signature scoring

Gene set enrichment analysis (GSEA) was performed to identify the
pathways enriched across cell types or clinical groups. The GSEA
analysis function gsePathway from ReactomePA™ (version 1.42.0)
was used to compute normalized enrichment scores (NESs) derived
froman ordered gene list. Gene lists were ordered by log, fold change
computed using limmatrend, correcting for processing site and batch
among cell types or clinical groups, as described above. To evaluate
the enrichment of agene signature inindividual cells, we computed a
signature score using the AddModuleScore_UCell function from the
UCell package” (version 2.2.0). A list of genes from each biological
signature was provided as an input. Higher scores were given to cells
that consistently showed higher expression of genes in the marker list
relative to arandomly selected set of background genes. To derive a
per-participant signature score, the mean signature score of all cells
intherelevant compartment was computed. Wherever necessary, the
Pvalues were adjusted using the BH approach.

Processing of bulk RNA-seq data to determine IFN signature
scores

Bulk RNA-seq data were obtained from the IA22 release from the
MMRF CoMMpass Study. The edgeR package’ (version 4.0.16) was
used to normalize raw count data, filtering out genes with fewer
than five counts per million (cpm) across all individual samples.
The gene set variation analysis (GSVA) package (version 1.50.0) was
used to compute per-sample signature scores for the IFN-I signature
(Supplementary Table 4), using log cpm values as the input, and a
Gaussian kernel density function. A Student’s ¢-test using the rstatix
package”’ (version 0.7.2) was used to determine whether the difference
inIFN-Isignature scores across participants withnormal1q21,1q21gain
or 1q21 amplification or across participants with normal P53 activity,
partialloss of P53 or complete loss of P53 was significant.

To determine whether IFN-I patterns identified in CD138" bulk
RNA-seq were consistent with those found in CD138™ sequencing,
IFN-Iscoresinresidual plasma cellsin the CD138” scRNA-seq data were
compared to the CD138" bulk RNA-seq data. Counts from baseline
participants with at least 50 plasma cells captured in the scRNA data
following quality control and doublet filtering were aggregated into
pseudobulked count matrices using the pseudobulk expression func-
tion in Seurat version 4. Aggregated per-participant count matrices
were subsequently filtered in anidentical manner to the bulk RNA-seq
dataand GSVAIFN-Iscores were computed.

Cell-cell communication analysis

CellChat*® (version 2.1.0) was used to identify possible cell-cell interac-
tions across the BMME. The normalized, batch-corrected count matrix
described above was used as the input to CellChat. Doublet clusters
were excluded from this analysis. For downstream analysis, some
clusters representing biologically similar subtypes were aggregated.
Atable displaying the mapping between the original clusters and their
CellChat clustersis provided in Supplementary Table 6.

GRN analysis

The GRNs for selected clusters within our dataset were estimated
using pySCENIC, an implementation of SCENIC* (single-cell regula-
tory network inference and clustering). The analysis was focused on
selected clusters of interest from the myeloid compartment (CD14*
Mono_IFN, CD14* Mono pro-inflam, Macro/Mono and GMP). The
batch-corrected count matrix served as the input to run GRNBoost2
and generate coexpressionmodules. GRNs were further inferred using
the hg38 refseq-r80 (mc_v10_clust) motif database, hgnc motifanno-
tation (version 9) and pySCENIC’s default settings. Because of the
stochastic nature of the GRNBoost2 algorithm, slightly varying regu-
lons are detected in each run. Hence, high-confidence regulons were
filtered outifthey were present in>80% of runs, while their target genes
were considered if they were detected in >90% of runs. Using AUCell
from pySCENIC, each cell was assigned a gene signature score (AUC)
indicating the degree of TF activity. The AUC values were normalized
across each regulon and their mean was calculated for each cluster to
identify regulons that were strongly associated with aspecific cluster.
AUC values foreach cellin the clusters of interest were averaged to get
aper-participant per-regulon score. The cutpoint algorithm was used
for grouping samplesinto ‘high’ and ‘low’ regulon activity categories.
Survival analysis was performed using the Kaplan-Meier method and
CoxPH regression model on the variables ‘high” and ‘low’ activity. As
AUC values were derived from batch-corrected count matrices, the
shipment batch was not adjusted for in the Cox model.

Statistics and reproducibility

No statistical method was used to predetermine sample sizes. Sam-
ples from participants with a baseline time point who were treated
with standard doublet or triplet therapy in the CoMMpass study were
prioritized for scRNA-seq. Each analysis used all processed scRNA-seq
samples available that met our quality control requirements, with the
required clinical, cytogenetic or demographic information for each
analysis. Two scRNA-seq samples were excluded from all analyses, in
which >65% of cells from the sample were identified as mm10 spike-in
cells. Samples were from an observational clinical trial and no rand-
omization was performed with regard to therapy. Therapy selection
was determined by the physician. For creating scRNA-seq libraries,
aliquots were randomly assigned to one of the four processing cent-
ers. Investigators were not blinded to allocation during experiments,
as participant categorization for subsequent analyses was based on
observed features and outcome assessments. Normality of data dis-
tribution was not formally tested, although variance stabilization
transformations were applied where appropriate for the type of data,
as described in the corresponding sections (logit transformation for
proportion data in differential abundance and log normalization for
expression datain differential expression).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All single-cell raw data, processed summary data and clinical infor-
mation used for this project are under controlled access at MMRF’s
VLAB shared resource. MMRF requires anyone interested in accessing
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the data apply for access at https://mmrfvirtuallab.org and to meet
following minimum qualifications: (1) permanent employee of their
institution and at a level equivalent to a tenure-track professor or
(2) senior investigator that is overseeing laboratory or research pro-
gram. If the access request is approved, usually within 1 week, inves-
tigators will receive an email with instructions to download the data.
Alternatively, a Seurat object with limited metadata is available from
Zenodo (https://doi.org/10.5281/zenodo.11150168)’%. Zenodo addition-
ally contains a copy of the Immune Atlas Cell Annotation Dictionary,
which provides additional information about cluster annotation and
marker expression for those who wish to use the preannotated dataset.
Forall other additional inquiries, please email InmuneAtlasNetwork@
themmrf.org. The datafromthis study can be explored online at https://
myelomaimmuneatlas.themmrf.org/. Source data are provided with
this paper.

Code availability

All the code used for data analysis and generation of figures is avail-
able on the MMRF Immune Atlas Consortium GitHub (https://github.
com/theMMRF/MMRF_ImmuneAtlas). A copy of the Immune Atlas Cell
Annotation Dictionary providing additional informationabout cluster
annotationand marker expression will also be provided on the GitHub
for those who wish to use the preannotated dataset.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Overview of clinical characteristics of the validation
cohort of 74 NDMM patients. (a) Summary of clinical characteristics. The forest
plotillustrates the effect of various clinical features on progression-free survival
(PFS). Error bars display a 95% confidence interval. (b) Bar chart showing the
total number of patients with each of the six cytogenetic events used for risk
stratification. (c) UpSet plot showing the distribution and overlap of the major
cytogenetic abnormalities comprising the Davies-based high-risk myeloma
definition between patients. (d) UpSet plot showing the intersection of patients

categorized as standard-risk (SR) or high-risk (HR) and non-progressor (NP)
orrapid progressor (RP). (e) Kaplan-Meier curves depict survival outcomes

for patients categorized based onrisk stratification (HR vs SR), transplantas a
frontline treatment, treatment type, and ISS staging. Two-sided p-values froma
log-rank test are displayed. Patients lacking ISS stage information at baseline or
who lack WGS information for cytogenetic risk stratification were omitted from
the survival analysis.
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Extended Data Fig. 2| Evaluation of Batch Effects in the scRNA-seq data. UMAP
projections and per-sample cluster compositions across immune and tumor
cellcompartments, illustrating the effects of batch correction using Harmony
approach. Each panel (a-f) corresponds to distinct cellular compartments,
including (a) all cells, (b) T and natural killer cells, (c) myeloid cells, (d) B cells,
erythroblasts, and progenitors, (e) erythrocytes, and (f) plasma cells, further
subdivided into 6 subpanels (x.1-x.6). In panel (a), each cluster is colored by their
lineage group, with different shades distinguishing the clusters (see Fig. 2a-c).In
panels (b-f), clusters are colored by their sub-compartment colors (see Fig. 2d-i,
Extended Data 3). Subpanels (x.1-x.4) display UMAPs before (x.1-x.2) and after
(x.3-x.4) Harmony batch correction, colored by cell type (x.1, x.3) with doublets

marked in gray or by processing site (x.2, x.4) with individual sample aliquots
distinguished by lighter or darker shades of the respective color (Emory: blue,
Mayo: red, MSSM: green, WUSTL: purple). (x.5) Stacked bar charts highlighting
the sample aliquots contributing to each (a.5) lineage group or (b.5-f.5) cluster,
where the size of each segment is proportional to the number of cells coming
from agiven sample in the respective population and colored as described in
panels x.2 and x.4. (x.6) Stacked bar charts displaying the cellular composition
withinindividual aliquots, where the size of each segment is proportional to the
cells associated with that cluster as a fraction of all cells in the corresponding
compartment, colored by cluster as described in panels x.1and x.3.
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Extended DataFig. 3| Extended Cell Type Annotation information. (a) Dot
plot displaying additional markers for CD4" T, CD8" T, and natural killer cell
annotations. Scaled expression values for each gene are visualized on ared-blue
color scale, with the size of each dot representing the percent expression of the
corresponding gene. The colored triangle next to each cell name corresponds
tothe T and NK cell clusters (see Fig. 2d). (b-c) UMAPs displaying subclusters of
CD4" T cells (b) and CD8" T cells (c). (d-e) UMAP (d) and dot plot displaying the
top differentially expressed markers (e) for mature erythrocyte populations.

(f) Feature plot displaying plasma cell markers. UMAP embeddings correspond
to those displayed in Fig. 2a. (g-h) UMAP (g) and dot plot displaying the top
differentially expressed markers (h) for the plasma cell compartment.

(i) Scatter plot showing the relationship between logit-transformed plasma cell
proportions in CD138" scRNA-seq data and plasma cell fractions estimated

via flow cytometry on unsorted aspirates. Each dot represents an individual
sample, colored by processing site. The black line with p and R? values represents
the line of best fit average across processing sites, where dashed color lines

represent fits for individual processing sites. (j) Box plot depicting the plasma
cell proportionin the scRNA-seq data for each patient (n,e,=263). Patients

are binned based on whether their plasma cell fraction is 220% (N ,ien=74) OF
<20% (Npaien=189), as estimated by flow cytometry on unsorted samples. Two-
sided p-values comparing the groups is estimated via a linear model. In the box
plots, bounds of the box represent the 25" and 75" percentile, with the center
displaying the median. Whiskers extend to 1.5*IQR beyond the bounds of the
box. (k-m) Analyses to assess for malignancy of the plasma cells in the CD138™#
scRNA-seq data. (k) UMAP highlighting cells with driver overall and individual
gene mutations in red and inferred copy number in purple. UMAP embeddings
correspond to those displayed in Fig. 2a (I) UMAP of all cell types of RP (left) or NP
(right) cohort samples showing various driver mutations. (m) CCNDI expression
across cells in the RP vs NP patient cohorts (top). CCND1 expression in cells from
patients with mutations (mut) and/or translocations (Tx) determined based on
analysis of WES and WGS data (bottom). Unadjusted p-values from a wilcoxon
rank-sum test between RP and NP samples is displayed if significant.
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Extended Data Fig. 4| Summary of Cytogenetic Risk Associated Immune
Alterations in Multiple Myeloma. (a) Survival based on CD8 Teff HLA" cell
abundance asafraction of CD8" T cells (p = 0.036, log-rank test). Cell abundances
were batch-corrected using regression residuals. Cut-off was determined by
maximally selected rank statistics at the 82% quantile (1911ow, 39 high).

(b) Progression-free survival analysis from regression of the above described
CD8 TeffHLA" metrics (p = 0.062, log-rank test) with cutoff set at the 89% quantile
(205 low, 25 high). (c-d) Scaled expression of ‘dysfunctional’ T cell signature
genes, including exhaustion and senescence markers (Supplementary Table 4).
Dot plot (c) showing percent of cells expressing each gene with dot size and
average expression with color (red = high, blue =low) and tile plot (d) showing
average expression across cluster. Rows are clusters, and columns are genes,
grouped by signature category. (e-f) Trajectory plots depict the predicted
differentiation of CD8" T cell subtypes from CD8" naive T cells. Arrows indicate
directionality and dots represent trajectory clusters colored by batch-adjusted
log-odds abundance and sized by cell count. Comparisons shown for patients
withboth t(4;14)[NSD2] and 121 gain (e) and TP53 complete loss (f) compared

to those without them (orange = high, blue = low). (g) Per patient heatmap of
overall IFN-I response signature scores. Red corresponds to high signature score,
blue corresponds to alower signature score. Signature scores are normalized
within each celllineage. Patients with no cells of a specific type will have agrey

bar for their IFN-Isignature score. Patient tumor cytogenetics are displayed
inatitle map to the left of the signature score plot. (h) Dot plots of differential
cellular abundance analysis for patients with 1q21 gain in combination with
other high-risk abnormalities. Each row corresponds to acomparison between
1g21and other cytogenetic events. “HR_Nolq” = high risk without 121 gain;
“HR+1q21” = high risk with 1q21 gain. Colors indicate log-odds ratios, and shapes
indicate two-sided p-values comparing cluster proportions froma linear model
(circle=ns, diamond =p < 0.05, square =p < 0.01). (i) Dot plot of differential
cellular abundance analysis for patients with partial or complete loss of TP53 via
mutation or copy number loss. Partial loss is defined as either monoallelic loss of
17p13 or one non-synonymous mutation of 7P53. Complete loss is defined

as biallelic loss of 17p13 or monoallelic loss of 17p13 with mutation.

(§) Dot plot summarizing differential cellular abundance analysis for patients
with Chromothripsis or APOBEC events. (k-m) Box plots illustrating the
relationship between bone marrow plasma percentages (>=20%, Nyyienc = 74;
<20%, Nyyien: = 189), as estimated via flow cytometry before CD138 isolation
(x-axis), and the abundance of CD8" T effector memory cells (N ien=263)

(k), BM-resident NK cells (), and fibroblasts (m). Two-sided p-values for each
comparison were computed using a linear model. In the box plots, bounds of the
box represent the 25" and 75™ percentile, with the center displaying the median.
Whiskers extend to 1.5*IQR beyond the bounds of the box.
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Extended DataFig. 5| Differential abundance analyses forimmune
subpopulations comparing rapid progressors versus non-progressors. (a-d)
Summary differential abundance volcano plots and individual cluster box plots,
computed as either a fraction of (a) allimmune cells, (b) B cells, (c) myeloid cells,
or (d) CD3" cells, comparing RP and NP patients. Each panel consists of a volcano
plotinthetop left, displaying the log-odds ratio (x-axis) derived from a site-
adjusted linear model associating progression group with logit-transformed cell
proportions, and the y-axis displays the -logl10 of the two-sided p-value from the
linear model. Points are colored according to cluster identity in Fig. 2.

Box plots depict the per-patient proportion for each cluster within each

compartment, with individual patients shown as open circles (Rapid Progressors
(RP, Npagien = 67)=0range, Non-Progressors (NP, nyen, = 83)= Blue). Two-sided
p-values are displayed above the box plot if the populations are significantly
different between RP and NP (p < 0.05) as assessed using a linear model. In the
box plots, bounds of the box represent the 25" and 75" percentile, with the center
displaying the median. Whiskers extend to 1.5*IQR beyond the bounds of the

box. (e) Comparison of differential abundance profiles between triplet therapy
patients and the overall cohort. The x and y axes display log-odds ratio change

in proportion between RP (positive) and NP (negative) patients across triplet
therapy patients (x-axis) or all patients (y-axis) as a fraction of immune cells.
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Extended DataFig. 6 | Selected gene regulators and their survival associations  using pySCENIC on selected myeloid clusters. Kaplan-Meier curves are based on

inmyeloid populations. Kaplan-Meier curves (top) and feature plots displaying the average AUC value across the selected myeloid populations. The cut-point
the per-cell AUC scores (bottom) in selected myeloid populations for STAT1 (a), approach wasimplemented to stratify patients into either high or low regulon
BRCAL1 (b), E2F1(c), E2F8 (d), IRF1(e), IRF2 (), IRF7 (g), IRF9 (h), and KLF9 (i) expression groups. Two-sided p-values indicate the significance of a CoxPH
regulons. Gene regulator analysis and regulon identification were performed modelfitted to the regulon AUC score.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7| UMAP and dot plot comparisons of validation and
discovery cohorts across cell compartments. UMAP projections and stacked
bar charts comparing cellular composition between discovery and validation
cohorts across major immune cell compartments. Each panel (a-d) corresponds
to adistinct cellular compartment including (a) all cells, (b) NK/T cells, (c)
myeloid cells and (d) B cells, erythroblasts and progenitor cells, further
subdivided into 5 subpanels (x.1-x.5). Subpanels (x.1-x.2) display UMAPS of
both discovery and validation cells colored by cell type (x.1) or sample (x.2).

Subpanels (x.3-x.4) show the same UMAPS separated by discovery (x.3) and
validation (x.4) cohorts, colored by cell type. Subpanels (x.5) contain stacked bar
charts representing the distribution of cells within each cluster across individual
samples and separated by cohort. Samples from the discovery cohort are colored
different shades of blue, while samples from the validation cohort are colored
different shades of red. (e-i) Validation cohort dot plot showing the previously
described cluster markers for (e) CD8" cells, (f) CD4" cells, (g) natural killer cells,
(h) myeloid cells, and (i) B cells, erythroblasts, and progenitor cells.
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Extended Data Fig. 8| Additional Model Diagnostics and Predictive Modeling
of Overall Survival and Progression in MM Using Immune Signatures,
Cytogenetics, and Clinical Features. Panels (a-c) show model AUCs in the
discovery cohort across immune compartments: (a) AUCs by immune cell
compartments and variable combinations, (b) Boxplots showing the distribution
of AUCs for models integrating a single cell type with various covariates, along
with the AUC for the top models integrating all clinical covariates and either 7,

11, 34, or allimmune populations, and (c) Boxplots showing the AUCs for models
derived fromindividualimmune populations, grouped by cellular compartment.
Inthe box plots, bounds of the box represent the 25" and 75™ percentile, with the
center displaying the median. Whiskers extend to 1.5*IQR beyond the bounds of
the box. Whiskers extend to 1.5*IQR beyond the bounds of the box. (d-i) Receiver
operating characteristic (ROC) and Kaplan-Meier (KM) analysis for overall
survival (OS) predictionin the discovery cohort. (d) ROC curves for models with
singleimmune subclusters (SubC), clinical covariates (CoV), cytogenetics, and
combinations. Covariates include age, batch, site, ISS stage and cytogenetics.
KM curves depict predicted OS based on (e) clinical covariates (f) cytogenetics +
clinical covariates, (g) Immune Atlas Signature + clinical covariates, and (h) the
top 20 predictive immune subclusters + clinical covariates. (i) The importance
ofimmune subclusters for predicting the OS colored by favorable (blue) or
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Extended Data Fig. 9| See next page for caption.
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Extended Data Fig. 9 | Prediction of MM progression by integration of IMWG
cytogenetics risk along withimmune signatures. (a) Diagram illustrating the
type of variables that were tested (immune signatures, IMWG cytogenetics,

and clinical covariates) followed by the three regression strategies used (elastic
net, logistic regression, and Cox) with bootstrap validation for model selection.
(b) Receiver operating characteristic (ROC) curves for progression prediction
models based on single clusters, clinical variables, and cytogenetics orimmune
atlas variables alone and in combination are shown and colored based on the
specific group of models. The labels include subclusters (SubC) and covariates
(CoV), whichinclude age, batch, site, ISS, and cytogenetics. Kaplan-Meier curves
showing the separation of patients with high or low scores for prediction of PFS
are shown for (c) demographics-based, (d) IMWG 2024 high-risk criteria, and (e)
Immune Atlas signatures. Kaplan-Meier curves show the separation of patients

when cytogenetic risk scores are combined with the (f) best 10 predictive
immune atlas subclusters or (g) 57 subclusters. (h) Volcano plot displaying

the importance ofimmune subclusters for predicting the progression based

on the coefficients from the modeling. The clusters with better and poor MM
outcomes are shown with blue and red colors, respectively. Receiver operating
characteristic (ROC) curves for using 10 subclusters and excluding ASCT for
discovery (i) and validation (j) cohorts. (k) Dot plot showing the average scaled
expression of marker genes for the “MatNeut2” phenotype reported in
Jongetal., 2024. Expression is visualized on a red-blue color scale, with the size of
each dot corresponding to the percent expression of marker genes. Expression is
normalized relative to the average cluster expression across all CD14" monocyte
clusters.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

O0OX O O00000%

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection.




Data analysis Code involved in the processing and analysis of single-cell RNA sequencing data has been deposited on GitHub https://github.com/theMMRF.
Cell Ranger v6.0.1 was used for alignment of sequencing data to the GRCh38 reference genome.
DropletUtils (v1.14.2) was used for empty droplet removal.

CellBender (v0.3.0) was used to remove ambient RNA.

DoubletFinder, Scrublet (v0.2.3), and Pegasus (v1.8.1) were used for doublet identification.
Seurat (v4.3) R package was used for single-cell analyses.

Harmony (v0.1) was used for batch correction.

Limma was used for differential expression and abundance analysis.

RStatix (v0.7.2) and DirichletReg (v0.7-1) were used for differential abundance analysis.
Survival (v3.2.7) and survminer (v0.4.9) packages were used for survival analyses.

Slingshot (v2.6.0) was used for trajectory analysis.

UCell (v2.2.0) was used for signature score calculation.

ReactomePA (v1.42.0) was used for gene set enrichment analysis.

CellChat (v2.1.0) was used for cell-cell communication analysis.

pySCENIC (v0.12.1) was used for gene regulatory network analysis.

FNN (v1.1.4) was used for label transfer.

edgeR (v4.0.16) was used for processing bulk or pseudobulked counts data.

GSVA (v1.15.0) was used for computing signature scores on bulk or pseudobulked counts data.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All the single-cell raw data, processed summary data and clinical information used for this project are under controlled access at MMRF’s VLAB shared resource.
MMRF requires anyone interested in accessing the data apply for access at https://mmrfvirtuallab.org and to meet following minimum qualifications: 1) must be a
permanent employee of their institution and at a level equivalent to a tenure-track professor, 2) senior investigator that is overseeing laboratory or research
program. If the access request is approved, usually within a week, investigators will receive an email with instructions to download the data.

Alternatively, a Seurat object with limited meta data is available at Zenodo (doi: 10.5281/zenodo.11150168). Zenodo additionally contains a copy of the Immune
Atlas Cell Annotation Dictionary, which provides additional information about cluster annotation and marker expression for those who wish to use the pre-
annotated dataset. Source@data for Figures 1-7, and Extended Data Figures 1-9 have additionally been provided as Source Data files. For all other additional
inquiries, please email ImmuneAtlasNetwork@themmrf.org.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Metadata from patients in this cohort includes Sex (biologic attribute) but not gender. The frequency of "Male" and "Female"
patients with respect to our primary covariates of interest (Risk, Progression) are provided. Survival analysis comparing the
outcomes of male and female patients in our dataset are also shown. We did not observe significant associations with sex
and either risk or outcomes.

Reporting on race, ethnicity, or  Metadata from patients include self reported race and ethnicity. We did not identify any significant association between race

other socially relevant and our covariates of interest. Subsequent analysis do not focus on race currently in this paper.
groupings
Population characteristics Patients had newly diagnosed, previously untreated multiple myeloma. Patients are from the MMRF CoMMpass study, which

recruited from 84 clinical sites located in the United States, Canada, Spain, and Italy.

Our analysis primarily focuses on cytogenetic risk stratification, and progression free survival. In addition to sex, race, and
ethnicity, patient age at diagnosis, BMI, ISS stage, ECOG assessment, first induction therapy, and whether the patient did or
did not receive ASCT in their first line are also described.

Recruitment Samples from this analysis were derived from patients enrolled in the CoMMpass study (NCT01454297). The criteria for
inclusion in this study are as follows:

Inclusion Criteria:

Patient is at least 18 years old.

Patient has been diagnosed with symptomatic MM with measurable disease that includes at least one of the following:
Serum M protein > 1g/dl Urine M protein > 200 mg/24 hrs Involved free light chain level > 10 mg/dl and an abnormal serum
free light chain ratio (<0.26 or >1.65).

The patient is a candidate for systemic therapy that includes an IMiD® (e.g., lenalidomide, pomalidomide, thalidomide) and/
or proteasome inhibitor (e.g., bortezomib, carfilzomib) as part of the initial regimen.

No more than 30 days from baseline bone marrow evaluation as per this protocol to initiation of first-line therapy.

Patient has read, understood and signed informed consent.

>
Q
—
(e
(D
©
(@)
=
S
<
-
(D
©
O
=
>
(@)
w
[
3
=
Q
<




Exclusion Criteria:

Patient is already receiving systemic therapy for MM (a single dose of bisphosphonates and up to 100 mg total dose of
dexamethasone or equivalent corticosteroids are permitted prior to registration on study).

Patient had another malignancy within the last 5 years (except for basal or squamous cell carcinoma, or in situ cancer of the
cervix).

Patient is enrolled in a blinded clinical trial for the first-line treatment of multiple myeloma. Patients may be enrolled in
subsequent clinical trials as long as continued access to data and tissue, as per this protocol, is not prohibited.

Ethics oversight All samples for the study were obtained from the MMRF CoMMpass clinical trial (NCT01454297). Procedures involving
human participants as part of this trial were performed by the ethical standards of the MMRF research committee. Written
informed consent was obtained from patients for the collection and analysis of samples and clinical information by the
MMREF. The Institutional Review Board at each participating medical center approved the study protocol. The list of
participating institutes that have approved the study protocol is available at ClinicalTrials.gov (NCT01454297).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size This analysis focuses on 337 patients from the MMRF CoMMpass study. No formal statistical analysis was used to estimate the number of
samples required for this study. The number of samples chosen would target over ~1 million cells, which would allow for high resolution of
the bone marrow immune compartment.

Data exclusions  Samples from patients who received standard triplet or doublet therapy, and had CD138-negative bone marrow samples available at baseline
were select for analysis. This sub-cohort of patients shows similar demographic and clinical characteristics to the full CoMMpass study. Two
scRNA-seq samples were excluded prior to downstream analysis, in which greater than 65% of cells from the sample were identified as mm10
spike-in cells.

Replication This study follows a previous pilot study on the feasibility of a multi-center, single-cell RNA sequencing analysis (Yao et al., 2022, Pilcher et al.,
2023). Samples for analysis was split across four different medical centers and universities, in four different shipment batches. Batch effects

between processing center and shipment batch were controlled for throughout analysis. External data for validation is not currently available.

Randomization  Samples are from an observational clinical trial and no randomization was performed. Therapy selection was determined by the physician.
Patient categorization is based on observed patient outcomes or cytogenetics.

Blinding In the observational trial, site investigators and analysts were not blinded to therapy selected. Patient groupings were based on observed
outcomes or cytogenetic information.
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Materials & experimental systems Methods
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Antibodies used

Validation

(Invitrogen/eBioscience, 12-2229-42), CD13/ANPEP (BD Biosciences, 340686), CD19 (BD Biosciences, 340720), CD20/MS4A1 (BD
Biosciences, 346581), CD27 (BD Biosciences, 654665), CD28 (BD Biosciences, 348047), CD33 (BD Biosciences, 340679), CD52 (Life
Technologies, MHCD5204), CD56/NCAM1 (BD Biosciences, 340724), CD117/KIT (BD Biosciences, 340867), FGFR3/CD333 (R&D
Systems, FAB766P), Kappa (BD Biosciences, 643774), and Lambda (Life Technologies, MH10614)

Flow cytometry was conducted in a CAP/CLIA lab as a laboratory developed test at Spectrum Health, Grand Rapids Michigan

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

NIH/3T3 Cells (ATCC CRL-1658). Cell lines were purchased directly from ATCC.

Cell lines are authenticated by ATCC. No additional authentication was performed.

Mycoplasma contamination No mycoplasma contamination was detected by ATCC. No additional testing for mycoplasma contamination was performed.

Commonly misidentified lines  no commonly misidentified cell lines were used in this study.

(See ICLAC register)

Clinical data

Policy information about clinical studies
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This is a non-interventional clinical trial investigating the association of outcomes with molecular markers in multiple myeloma.
Additional information on the study protocol is accessible on clinicaltrials.gov (https://clinicaltrials.gov/study/NCT01454297)

Patients in the MMRF CoMMpass study were enrolled from sites in Canada, Spain, and the United States between the years of July
2011 and June 2015. Sites in Italy recruited additional patients until June 2016

The primary objective of the MMRF CoMMpass study was to identify molecular profiles and clinical characteristics that define various
subpopulations of multiple myeloma patients at diagnosis and relapse. This paper identifies immunologic subtypes, defined by
scRNA-seq expression and cellular abundance profiles, associated with myeloma. This paper also utilizes previously produced tumor
cytogenetic and transcriptomic data on tumor cells collected as part of this study. Secondary objectives of the MMRF CoMMpass
study was to collect information on progression free survival and overall survival, which are also presented within this manuscript.
Targetted observation periods were eight years following initial diagnosis.
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Methodology

Sample preparation Not available - Conducted in a CAP/CLIA certified laboratory running a laboratory developed test
Instrument Not available - Conducted in a CAP/CLIA certified laboratory running a laboratory developed test
Software Not available - Conducted in a CAP/CLIA certified laboratory running a laboratory developed test
Cell population abundance Not available - Conducted in a CAP/CLIA certified laboratory running a laboratory developed test
Gating strategy Not available - Conducted in a CAP/CLIA certified laboratory running a laboratory developed test. Flow cytometry was not

performed to separate cells into CD138-positive and CD138-negative components.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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