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A single-cell atlas characterizes 
dysregulation of the bone marrow immune 
microenvironment associated with 
outcomes in multiple myeloma
 

Multiple myeloma (MM) remains incurable despite advances in treatment 
options. Although tumor subtypes and specific DNA abnormalities are 
linked to worse prognosis, the impact of immune dysfunction on disease 
emergence and/or treatment sensitivity remains unclear. We developed 
an Immune Atlas of MM by generating profiles of 1,397,272 single cells 
from the bone marrow (BM) of 337 newly diagnosed participants and 
characterized immune and hematopoietic cell populations. Cytogenetic 
risk-based analysis revealed heterogeneous associations with T cells of 
BM, with 17p13 deletion showing distinct enrichment of a type 1 interferon 
signature. The disease progression-based analysis revealed the presence of 
a proinflammatory immune senescence-associated secretory phenotype in 
rapidly progressing participants. Furthermore, signaling analyses suggested 
active intercellular communication involving a proliferation-inducing 
ligand and B cell maturation antigen, potentially promoting tumor growth 
and survival. Lastly, using independent discovery and validation cohorts, 
we demonstrated that integrating immune cell signatures with known 
tumor cytogenetics and individual characteristics significantly improves 
stratification for the prediction of survival.

Multiple myeloma (MM) is the second most prevalent hematological 
cancer and its incidence continues to rise globally1,2. An estimated 
35,780 new diagnoses and 12,540 deaths are projected for 2024 in the 
United States3. The emergence of myeloma-targeting biologic and 
immune-based therapies has led to notable improvements in out-
comes4. Nevertheless, curative outcomes are characteristically elusive 
and most persons with MM eventually succumb to the disease. Disease 
evolution is associated with progressive immune dysregulation. With 
the recent US Food and Drug Administration approval of immuno-
therapies such as chimeric antigen receptor (CAR) T cells and bispecific 
T cell engagers, understanding the immune elements in the myeloma 
microenvironment has become increasingly important for address-
ing disease emergence and/or response to treatment. Over the past 
15 years, multiple studies5–10, including the Clinical Outcomes in MM to 
Personal Assessment of Genetic Profiles (CoMMpass) registry8,11, have 

investigated the genomic landscape and diversity of MM and identified 
specific tumor subtypes and their underlying associations with clinical 
outcomes. Furthermore, these studies have demonstrated that, like 
other cancers, MM tumors are multiclonal, with their clonal makeup 
evolving over the course of the disease progression and exposure to 
treatments. Notably, prognostic models leveraging these genetic 
determinants are limited in their capacity to identify high-risk (HR) 
participants for early relapse. This suggests that latent, tumor-extrinsic 
factors contributing to prognosis are not captured by current models.

The bone marrow (BM) microenvironment (BMME) composi-
tion in MM has been identified as a factor affecting tumor progres-
sion and therapeutic outcomes. Recent studies have pointed to T cell 
exhaustion12,13 and the infiltration of immunomodulatory cell popula-
tions contributing to immunoediting and immune evasion in MM, such 
as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Treg), 
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other factors, such as the immune environment, might have additional 
critical roles (Fig. 1f). As expected, participants categorized as SR had 
improved progression-free survival (PFS) relative to HR participants, 
suggesting that our risk classification strategy was informative for 
predicting outcomes (Fig. 1h; P = 0.007). Additionally, survival analysis 
on other clinical variables also demonstrated that discovery cohort 
participants who either underwent BM transplant (P = 9.32 × 10−8) or 
received triplet treatment (PI, IMiD and steroid) (P = 0.0002) or who 
were classified as ISS stage I had significantly (P < 5.29 × 10−6) better 
outcomes (Fig. 1h). Similar patterns of outcomes were also observed in 
the validation cohort, underscoring the similarity in our discovery and 
validation cohorts (Extended Data Fig. 1e and Supplementary Table 3).

Single-cell transcriptome profiling identifies traditional and 
rare cell populations of the myeloma BMME
Across 1,149,344 high-quality BM cells (Fig. 2a) the baseline BMME 
consisted of T cells (30.51% CD8+, 23.39% CD4+), NK cells (6.82%),  
B cells (8.51%), myeloid cells (12.20%), erythroblasts and erythrocytes 
(7.87%) and plasma cells (9.17%), with the remainder comprising small, 
independent populations (hematopoietic stem cells (HSCs), plasma-
cytoid DCs (pDCs) and fibroblasts; 1.53%) (Fig. 2b,c). Canonical lineage 
markers were used for cell type and subtype annotation (Fig. 2b,c). The 
cellular profiles showed subtle variations associated with the process-
ing sites (that is, Mayo, Emory, Washington University and Icahn School 
of Medicine at Mount Sinai) and batch-corrected using the Harmony 
approach (Extended Data Fig. 2a–f).

The T and NK cell compartment formed 30 clusters across CD4+ 
(11 clusters), CD8+ (15 clusters) and NK (four clusters) cell populations 
(Fig. 2d,e and Extended Data Fig. 3a–c). CD4+ T cell clusters comprised 
naive (Tn), central memory (Tcm), effector (Teff) memory, Treg and 
helper (Th) cells (Fig. 2f and Extended Data Fig. 3b). This large-scale 
analysis also enabled the identification of rare cytotoxic CD4+ T cells 
with high expression of GZMB and PRF1 markers. Similarly, the CD8+ 
T cell population also comprised multiple clusters of memory and Teff 
cells, as well as activated Teff subtypes (that is, CD8_Teff_HLA) with low 
expression of cytotoxic markers but high expression of human leuko-
cyte antigen (HLA) markers (Fig. 2g and Extended Data Fig. 3c). The NK 
cell clusters comprised classical CD56+bright and CD56+dim cell types, as 
well as rare adaptive and BM-resident cell types (Fig. 2h).

The myeloid lineage comprised 18 clusters of classical CD14+ and 
nonclassical CD16+ monocytes, granulocytes, neutrophils, conven-
tional DCs (cDCs), pDCs and macrophages (Fig. 2i,j). The B cell com-
partment contained pro-B cells, as well as immature transitional, naive 
and memory B cells (Fig. 2k,l). The compartment also captured imma-
ture hematopoietic populations, such as HSCs, mast cells and eryth-
roblasts. A distinct population of mature erythrocytes was observed 
(Extended Data Fig. 3d,e), with nine subclusters exhibiting minimal 
participant-specific heterogeneity.

The plasma cells, ~9.17% of cells on average in baseline samples 
(Extended Data Fig. 3f–h), were likely residual myeloma cells that 

Th17 cells, dendritic cells (DCs) and dysregulated natural killer (NK) 
cells, as well as tumor-associated neutrophils and macrophages14–17. 
We hypothesized that profiling the BMME of persons with newly diag-
nosed MM (NDMM) before treatment with standard myeloma therapies 
could reveal immune populations and signaling pathways associated 
with disease emergence or clinical outcomes. Such insights can be 
used to refine current participant stratification tools including the 
revised International Staging System (R-ISS) and, importantly, inform 
strategies for target identification and rational integration of various 
immunotherapies in MM.

To this end, we generated a BMME Immune Atlas of participants 
with NDMM from the MM Research Foundation (MMRF) CoMMpass 
study (NCT01454297), which included corresponding detailed clini-
cal and genomic information. We profiled and analyzed 1,149,344 
cells from 263 participants with NDMM during the discovery phase to 
identify immune populations and phenotypes associated with MM sub-
types and participant survival. These findings were further validated by 
generating profiles of an additional 247,928 cells from 74 participants 
with NDMM.

Results
An MM BMME cell atlas
To characterize the BMME of MM, we profiled CD138− BM aspirate from 
263 and 74 participants with NDMM as discovery and validation cohorts, 
respectively (Fig. 1a and Extended Data Fig. 1a–e). The demographic 
and clinical characteristics of the discovery cohort are reflective of 
the CoMMpass study (Supplementary Table 1), including median age 
(62.9 versus 64.1 years), African American percentage (16.6% versus 
17.5%), ISS stage 3 (27.9% versus 26.3%) and HR cytogenetics18 (51.6% 
versus 53.2%) (Fig. 1b and Supplementary Table 1). Therapeutically, 184 
participants initially received a combination of proteasome inhibitors 
(PIs), immunomodulatory drugs (IMiDs) and steroids, while 135 under-
went autologous stem cell transplantation (ASCT) as first-line therapy 
(Fig. 1c). All samples were profiled using our previously standardized 
single-cell RNA sequencing (scRNA-seq) protocol12,19,20.

Initially, we examined how the participant’s immune landscape 
varied according to tumor type by stratifying participants on the basis 
of individual cytogenetic alterations, including del(17p13), t(14;16)
[MAF], t(8;14)[MAFA], t(14;20)[MAFB], t(4;14)[WHSC1/MMSET/NSD2] 
and gain(1q21). We also investigated combining these cytogenetic 
alterations to define HR and standard-risk (SR) participants using 
the Davies risk definition18 (Fig. 1d,e and Supplementary Table 2). We 
additionally stratified participants on the basis of their disease progres-
sion kinetics into rapid progressors (RPs; ndiscovery = 67, nvalidation = 29), 
with progression events occurring within 18 months of diagnosis, and 
nonprogressors (NPs; ndiscovery = 83, nvalidation = 35), with durable remis-
sion for at least 4 years following treatment (Fig. 1f,g). Interestingly, 
while evaluation of the discovery cohort confirmed that most HR par-
ticipants were mainly associated with RPs and vice versa, we identified 
32 HR participants as NPs and 19 SR participants as RPs, indicating that 

Fig. 1 | Overview of the Immune Atlas design, workflow and participant 
characteristics. a, Overview of the Immune Atlas study design, discovery 
(nparticipants = 263) and validation (nparticipants = 74) participant cohorts, sample 
processing and analysis workflow. b, Clinical characteristics of participants 
(nparticipants = 263) in the discovery cohort. The forest plot illustrates the effect of 
various clinical features on PFS. Error bars display the 95% confidence interval 
(CI). c, Dot plot depicting the cross-section of samples based on ASCT and 
frontline treatment, where the dot size indicates the number of participants 
and dot color indicates the type of treatment regimen. d, Bar chart showing the 
total number of participants with each of the six genetic events used for risk 
classification. e, UpSet plot showing the distribution of the major cytogenetic 
abnormalities comprising the Davies-based HR myeloma definition. f, UpSet plot 
showing the intersection of participants categorized as SR or HR and NP or RP at 
baseline. g, Overview of progression group categorization and study design for 

the discovery cohort. The participants with a progression event within the first 
18 months following therapy were classified as RPs (nparticipants = 67). Participants 
with durable remission or no observed progression for at least 4 years were 
classified as NPs (nparticipants = 83). Participants with a progression event between 
18 months and 4 years were classified as RPs (nparticipants = 71). The participants 
who exited the study before 4 years of disease diagnosis without experiencing 
a progression event were classified as Inc (n = 42). h, Kaplan–Meier curves 
display the survival analysis for participants categorized on the basis of risk 
stratification (HR versus SR), transplant as a frontline treatment, treatment type 
and ISS staging. Participants lacking ISS stage information at baseline or WGS 
information for cytogenetic risk stratification were omitted from the relevant 
figure panels. The P values were estimated using a log-rank test. a and g were 
created with BioRender.com.
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were not effectively depleted by CD138 bead selection. The number 
of plasma cells was significantly correlated with levels of plasma 
cells measured before the CD138 selection step, indicating the inef-
ficiency of the bead selection method for samples with high tumor 
cell content (Extended Data Fig. 3i,j; R2 = 0.63, P = 1.68 × 10−56). Plasma 
cells captured in scRNA-seq also showed enrichment for muta-
tions in the driver genes, indicating that these were malignant cells 
(Extended Data Fig. 3k). The higher malignant plasma cell proportions 
were associated with RPs, with potential implications for participant 
outcomes (Extended Data Fig. 3l,m).

Analysis of tumor cytogenetic subgroups reveals 
heterogeneous impact on T cell compartment
To explore the potential relationship between tumor cytogenetic sub-
groups and their BM immune microenvironment, we assessed key 
abnormalities, including 1q21 gain, translocations (t(4;14)[NSD2], 
t(14;16)[MAF], t(8;14)[MAFA] and t(14;20)[MAFB]) and 17p13 deletion. 
We also assessed the combined effects of these cytogenetic altera-
tions by stratifying participants into HR and SR groups18. Overall, most 
immune populations had similar abundances across cytogenetic sub-
groups, both when combined and when individually assessed (Fig. 3a). 
Some differences in specific cell types were detectable, including a 
higher abundance of rare cytotoxic CD4+ T cells in NSD2 t(4;14) partici-
pants (Fig. 3a; P = 0.017). The participants with NSD2 t(4;14) and 1q21 
gain showed significant depletion of CD4+IFN (interferon)+ Teff mem-
ory (PNSD2 = 0.043, P1q21 = 0.001) and CD4+IFN+ Tcm cells (PNSD2 = 0.043, 
P1q21 = 0.011) (Fig. 3a). Interestingly, participants with MAF translocation 
exhibited significant dysregulation in the B cells rather than the T cells 
with depletion of naive and memory B cell populations (Pnaive = 0.001, 
Pmem = 0.004) (Fig. 3a) and enrichment of immature B cell states rang-
ing from the CD34+ pro-B population to the transitional B cell popu-
lation (Fig. 3a; P < 0.005). The MAF translocation participants also 
uniquely displayed significant enrichment of an immunosuppressive 
macrophage cluster (Fig. 3a; P = 0.031). Notably, across myeloid and 
T cell compartments, type 1 IFN (IFN-I) response-associated clusters 
depict reversed trends in participants with 17p13 deletion as com-
pared to NSD2 or 1q21 abnormalities. In contrast to the reductions in 
IFN-I-responsive CD4+ memory populations observed in NSD2 t(4;14) 
and 1q21 gain participants, participants with 17p13 deletion tended to 
possess a higher abundance of IFN-stimulated populations, with sig-
nificant enrichment of CD4+ Teff memory IFN-I cells (Fig. 3a; P = 0.007). 
Further combined analysis of these putative HR tumor abnormalities 
revealed significant enrichment of the late-activated CD8+HLA+ Teff 
(that is, CD8_Teff_HLA; P = 0.041) population and reduction in CD8+ 
Tn cells and CD4+TNF (tumor necrosis factor)+ Teff cells (P = 0.006 and 
0.042, respectively; Fig. 3a). This higher abundance of CD8_Teff_HLA 

Teff population was significantly associated with poor overall survival 
(OS) (P = 0.036; Extended Data Fig. 4a), and a trend toward worse PFS 
(P = 0.062; Extended Data Fig. 4b).

To further investigate the associations of individual HR abnor-
malities and their combined impact on the transcriptome, we con-
ducted an in-depth analysis focusing on T cell compartments (Fig. 3b). 
Participants with NSD2 and 1q21 gain showed higher-than-average 
expression of CD4+ and CD8+ T cell cytotoxicity and senescence-related 
genes (Fig. 3b). Interestingly, participants with MAF translocation 
showed higher exhaustion marker expression among CD8+ T cells, 
a feature that was primarily found in the early activated GZMK+ Teff 
memory cells (Extended Data Fig. 4c,d). The combined analysis of HR 
participants also highlighted overexpression of major histocompat-
ibility complex class II (MHC-II) and cytotoxicity markers across CD8+ 
T cells (Fig. 3b) driven by the higher abundance of the CD8_Teff_HLA 
population (Fig. 3c; P = 0.016). The interaction analysis of cytogenetic 
abnormalities suggested that the co-occurrence of NSD2 and 1q21 gain 
significantly contributed toward the enrichment of the CD8_Teff_HLA 
Teff population (Fig. 3c; P = 0.021) associated with poor outcomes 
(Extended Data Fig. 4a,b). The trajectory analysis on the T cell com-
partment showed that the HR-enriched CD8_Teff_HLA population 
represented a transitional state between early activated CD8+ memory 
to terminally differentiated cytotoxic populations (Fig. 3d). This popu-
lation also showed enrichment of T cell dysfunction characteristics 
among participants with HR cytogenetics, measured as a function of 
the expression of exhaustion or senescence markers (P = 2.35 × 10−16; 
Fig. 3e, Extended Data Fig. 4c,d and Supplementary Table 4). This shift 
or accumulation of activated T cell states was mainly observed in par-
ticipants with NSD2 and 1q21 gain, while participants with biallelic 17p13 
deletion or 17p13 deletion paired with a nonsynonymous TP53 mutation 
had lower levels of differentiated CD8+ T cells, possibly suggesting dif-
ferent immune escape mechanisms among the HR cytogenetic events 
(Fig. 3b and Extended Data Fig. 4e,f).

Tumor and microenvironment cells of participants with 17p13 
deletions depict distinct enrichment of IFN-I signature
To further study the distinct IFN-I-associated gene expression enrich-
ment observed in T cells of 17p13 participants across other compart-
ments, we generated an IFN-I signature using top marker genes from 
T cell IFN-I clusters (Supplementary Table 4). Participants with elevated 
expression of the IFN-I signature in one lineage, such as T cells, showed 
overexpression across all other compartments, including malignant 
plasma cells (Extended Data Fig. 4g). Across risk groups, IFN-I signature 
enrichment was specific to 17p13 cytogenetic groups only (Fig. 3f). 
Further interaction analysis of 1q21 with other HR abnormalities indi-
cated that IFN-I downregulation was primarily associated with 1q21 

Fig. 2 | Single-cell Immune Atlas of samples from participants with 
MM. a, UMAP embedding of 1,149,344 CD138− BMME cells collected from 
participants with MM. A total of 106 clusters were observed, spanning five 
major compartments defined by canonical markers: T and NK cells, B cells 
and erythroblasts, myeloid cells, erythrocytes and plasma cells. Populations 
identified as doublets are colored gray. b, Feature plots displaying the 
normalized gene expression for a selection of lineage-specific markers. UMAPs 
and per-aliquot cluster compositions to depict the effects of batch correction 
for major lineages are shown in Extended Data Fig. 2. c, A stacked bar chart 
displaying the average per-participant cell type composition at baseline. Clusters 
are colored by their lineage and shaded by subtype. Doublet populations 
are omitted. d, UMAP of the T lymphocyte and NK compartment. Cells are 
colored by individual cell type, with shaded boundaries representing regions 
predominantly containing CD4+ (purple), CD8+ (orange) or NK (green) cells. The 
color for specific cell types is included in the corresponding dot plots (f–h). An 
extended dot plot for precise annotation of different T and NK cell subtypes is 
shown in Extended Data Fig. 3a. UMAPs for only the CD8+ and CD4+ T cells are 
also shown in Extended Data Fig. 3b,c. e, Feature plots displaying the normalized 
gene expression per cell for markers to distinguish CD4+, CD8+ and NK cells. 

f–h, Dot plots displaying the average scaled expression of select marker genes 
used for precise cluster annotation. Expression is visualized on a red–blue color 
scale, with the size of each dot corresponding to the percentage expression. Dot 
plots are split by lineage into NK cells (f), CD8+ T cells (g) and CD4+ T cells (h). 
The colored triangle next to the cluster name matches the cluster color in the 
corresponding UMAP (d). Percent.mt refers to the percentage of mitochondrial 
transcripts. i, UMAP of the myeloid compartment. Cells are shaded by their 
subtype. Doublet populations are colored gray. j, Dot plot displaying the average 
scaled expression of select marker genes for precise cluster annotation in the 
myeloid compartment. Expression is visualized on a red–blue color scale, with 
the size of each dot corresponding to the percentage expression. The triangle 
next to the cluster name matches the cluster color in the corresponding UMAP. 
k, UMAP of the B cell and erythroblast compartment. Cells are colored by their 
lineage (B cells, cyan; erythrocytes, red; others, dark blue), shaded by subtype. 
Doublet populations are colored gray. l, Dot plot displaying the average scaled 
expression of select marker genes used for precise cluster annotation in the B 
cell and erythroblast compartment. Expression is visualized on a red–blue color 
scale, with the size of each dot corresponding to the percentage expression.
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gain (Extended Data Fig. 4h; P < 0.05). Conversely, enrichment of IFN-I 
populations was strongly associated with participants having a com-
plete loss of TP53 (Extended Data Fig. 4i; P < 0.05). This IFN-I signa-
ture enrichment in the plasma cells from scRNA-seq was confirmed on 
independently generated bulk RNA-seq data from CD138+ malignant 
cells of these participants (R2 = 0.75, P = 1.63 × 10−32; Fig. 3g). Analysis of 
CD138+ bulk RNA-seq data from the CoMMpass cohort (nparticipants = 660) 
confirmed opposite IFN-I activity patterns between 1q21 gain and TP53 
loss; participants with 1q21 gain or amplification showed reduced IFN-I 
activity (Fig. 3h; P = 0.003), whereas those with partial or complete 
TP53 loss exhibited increased activity (Fig. 3i; P = 0.015).

Furthermore, we also examined additional HR abnormali-
ties, including chromothripsis and APOBEC (apolipoprotein B 
mRNA-editing enzyme, catalytic polypeptide) activity, which showed 
no T cell dysregulation but some alterations in myeloid and B cell com-
partments (Extended Data Fig. 4j).

GZMK+ Teff memory cell level correlates with the abundance of 
myeloma cells
In addition, we also examined the impact of plasma cell levels on 
immune cells and, as expected, most nonmalignant BM populations 
were reduced in participants with elevated plasma cell levels (Fig. 3j). 
However, GZMK+CD8+ Teff memory cells, BM-resident NK cells and 
fibroblasts showed significant positive correlations with plasma cell 
percentages (P = 2.4 × 10−9; Fig. 3k–m and Extended Data Fig. 4k–m). 
In participants with higher plasma cell percentages, CD8+ T cells 
showed increased TIGIT and TOX expression (P = 0.035 and 0.014, 
respectively; Fig. 3n), mainly within GZMK+ Teff memory cells 
(Extended Data Fig. 4c,d), suggesting that high plasma cell levels might 
be promoting T cell exhaustion in BM.

RPs display accumulation of Teff and depletion of Tn 
populations
We subsequently investigated potential BMME alterations in RPs 
within <18 months (nparticipants = 67) of initial therapy, compared to 
those who had not progressed for at least 4 years (NP, nparticipants = 83) 

(Fig. 1g). Most of these participants received standard triplet ther-
apy, consisting of a PI, IMiD and a steroid as their first line of therapy 
(Supplementary Table 5). Broadly, RPs had lower abundances of CD4+ 
T cells and B cells and higher levels of myeloid, plasma and erythroid 
cells relative to NPs (Fig. 4a). The lower levels of B cells were driven by 
a large reduction in transitional, immature and naive B cells (P = 0.003; 
Fig. 4b and Extended Data Fig. 5a,b).

To investigate myeloid compartment enrichment (P = 0.027) in the 
RPs, we performed a trajectory analysis that revealed anticipated pro-
gression from immature to activated CD14+ monocytes, culminating 
into mature CD16+ monocytes (Fig. 4c). RPs were significantly enriched 
for CD14+CD163+ monocytes (Macro/Mono, P = 0.006) and depleted 
of IFN-I-stimulated CD14+ monocytes (CD14+Mono_IFN, P = 0.026) 
(Fig. 4c and Extended Data Fig. 5c). This IFN-I monocyte cluster contains 
several IFN-I signature markers, which have been previously noted in 
persons with TP53 loss (Fig. 3f–i). Differential gene expression analysis 
(DGEA) of CD14+ monocyte populations identified significant upregula-
tion of proinflammatory markers in RPs, such as CCL3, CCL4, IL1B and 
CXCL8, whereas IFN-I signaling-related genes were increased in NPs 
(that is, ISG15, IFI6, IFI44 and MX1) (Fig. 4d). Pathway analysis revealed 
enrichment of proinflammatory pathways (TNF, interleukin (IL)-10 
and chemokine signaling) in RPs, indicating an immunosuppressive 
phenotype. In contrast, NPs showed enrichment of MHC-II antigen 
presentation and IFN signaling, consistent with classical antigen pro-
cessing (Fig. 4e).

The focused analysis on the T cell compartment identified a signifi-
cantly higher proportion of CD8+ T cells (45.5%) in RPs in comparison 
to NPs (39.9%) (Fig. 4f; P = 0.01). Significant enrichment of CD8+ Tn 
(P = 0.015) and CD8+ GZMK+ Tcm (CD8_Tcm_GZMK, P = 0.023) cells was 
observed in NPs, while RPs exhibited higher abundance of differenti-
ated CD8+ cytotoxic Teff (CD8_Teff, P = 0.0008) and HLA+ Teff (CD8_
Teff_HLA, P = 0.001) populations (Fig. 4f and Extended Data Fig. 5d). 
Furthermore, DGEA supported this cytotoxic shift of T cells in RPs 
by identifying a significant upregulation of cytotoxicity markers 
(NKG7, GNLY, PRF1, FGFBP2, KLRD1, GZMB and GZMA). The T cells of 
NPs demonstrated significant upregulation of genes for early-stage, 

Fig. 3 | BMME alterations associated with cytogenetic abnormalities. a, BM 
immune cell type and subtype abundances comparing HR versus SR participants 
or stratifying by individual HR abnormalities. Proportions were normalized 
to the total number of nonmalignant cells per participant. Colors indicate the 
coefficient of a linear model fitted to logit-transformed proportion adjusting for 
processing site, with orange and blue indicating cell populations with higher and 
lower abundances, respectively. Shapes denote two-sided P values (circles, not 
significant; diamonds, P < 0.05; squares, P < 0.01). b, Expression of marker genes 
representing CD4+ and CD8+ T cell states in participants stratified by composite 
risk (that is, HR versus SR) or individual cytogenetic risk abnormalities. The 
colors indicate z score normalization, with positive values indicating higher 
expression levels (red) in participants with the risk event compared to the dataset 
average, whereas negative values (blue) indicate lower expression levels. c, Box 
plots show per-participant proportions for CD8+ Teff HLA cells as a fraction 
of total CD8+ cells, stratified by combined Davies risk (HR, nparticipants = 123; 
SR, nparticipants = 108) or the presence of 1q21 gain (nparticipants = 72), NSD2 t(4;14) 
(nparticipants = 12), their combination (nparticipants = 18) or neither (nparticipants = 127). 
Two-sided P values were computed using a linear model on logit-transformed 
proportions adjusting for site. d, Pseudotime trajectory of the CD8+ T cells, 
with arrows indicating the paths along the trajectory originating at CD8+ Tn 
cells. The cell types with high and lower proportions in HR as compared to SR 
are shown with shades of orange and blue colors, respectively. Proportions are 
shown as log odds ratios relative to total CD8+ T cells. e, Putative dysfunctional T 
cell signature (Supplementary Table 4) enrichment in CD8 Teff HLA+ cells from 
participants with HR NDMM (nparticipants = 123) as compared to SR (nparticipants = 108). 
The significance of the difference in signature levels was determined using the 
Wilcoxon rank-sum test, two-sided. The dashed red line indicates the median 
dysfunctional signature score for standard-risk patients. f, IFN-I response 
signature levels across major cell compartments, grouped by composite or 
individual HR abnormalities. Per-participant IFN-I response scores across 

each compartment are in Extended Data Fig. 4g. g, Correlation between IFN-I 
response signature scores between plasma cells of CD138+ (bulk RNA-seq, 
GSVA) and CD138− (pseudobulk scRNA-seq) compartments. Participants with 
greater than 50 plasma cells in scRNA-seq and matching bulk data were included 
(nparticipants = 108). Significance of the correlation was calculated using a linear 
model, adjusting for processing site using a two-sided test. h,i, IFN-I response 
signature scores derived from bulk RNA-seq, comparing participants with 
and without 1q21 copy-number alterations (h; normal, nparticipants = 408; gain, 
nparticipants = 213; Amp, nparticipants = 39) and participants with and without TP53 loss-
of-function mutations (i; none, nparticipants = 571; partial, nparticipants = 55; complete, 
nparticipants = 24). Participants included in the CoMMpass registry with available 
risk information and CD138+ bulk RNA-seq data were analyzed. The significance 
of differences in enrichment was evaluated using pairwise two-sided Student’s 
t-tests between groups. j, Dot plot summarizing differential abundance results 
across cell populations, including plasma cells. The marker shape indicates two-
sided P values and color represents the log odds ratios from a linear model fitted 
to logit-transformed proportions, with positive values denoting enrichment 
correlated with plasma cell levels. Proportions were computed as a fraction of 
all cell populations, excluding doublets. Differential abundance was assessed 
using the plasma cell percentage as both a continuous covariate and a categorical 
covariate (≥20% versus <20%). k–m, Scatter plots illustrating the relationship 
between BM plasma cell percentages, as estimated by flow cytometry before 
CD138 isolation (x axis) and the abundance of CD8+ Teff memory cells (k), BM-
resident NK cells (l) and fibroblasts (m). n, Comparison of exhaustion-related 
markers TIGIT and TOX expression across CD8+ T cells between participants with 
less than (blue; n = 189) and greater than (orange; nparticipants = 74) 20% plasma cells. 
In the box plots, bounds of the box represent the 25th and 75th percentiles, with 
the center displaying the median. Whiskers extend to 1.5× the interquartile range 
(IQR) beyond the bounds of the box.
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Tn populations (LTB, TCF7 and SELL) (Fig. 4g). RPs showed enrich-
ment of interleukin and chemokine signaling, while NPs were enriched 
in ribosomal and translational pathways linked to Tn cells (Fig. 4h). 
Trajectory analysis of CD8+ cytotoxic lineages revealed higher den-
sities of RP cells at later pseudotime points (that is, CD8_Teff_HLA 
and CD8_Teff), whereas NPs were enriched at earlier stages (CD8_Tn 
and CD8_Tcm_GZMK) (Fig. 4i,j). Cytotoxic markers (NKG7, GZMH and 
FGFBP2) peaked at late pseudotimes, associated with RPs, while Tn 
markers (CCR7, SELL, TCF7, CD27 and CD28) peaked at early pseudo-
times, associated with NPs (Fig. 4k). This suggests the accumulation 
of terminally differentiated, cytotoxic, CD27−CD28−CD8+ Teff cells in 
RPs, accompanied by a corresponding reduction in the healthy Tn and 
Tcm pool necessary for mounting an immunological memory, which 
might be associated with poor outcomes.

To further explore this hypothesis, we evaluated associations of 
independent cytotoxic and Tn CD8+ signatures from the pan-cancer 
T cell atlas21 to predict outcomes in our myeloma dataset. Elevated 
T cell cytotoxicity signature was significantly associated with worse 
PFS (P = 0.012) (Fig. 4l and Supplementary Table 4). Conversely, partici-
pants enriched in a Tn-like signature across their T cell compartment 
displayed better PFS (P = 0.002) (Fig. 4m and Supplementary Table 4). 
Exhaustion signature enrichment also showed negative associations 
with PFS (P = 0.021) (Fig. 4n and Supplementary Table 4). However, 
the expression of exhaustion did not correspond to the RP-enriched 
CD8_Teff population and seemed to primarily originate from CD8_
Tem, CD8_Teff_HLA, CD8_Tem_IFN and CD8_T_adp populations 
(Extended Data Fig. 4c,d). This is further supported by the significant 
association of curated putative dysfunctional T cell signature encom-
passing exhaustion and senescence markers (Supplementary Table 4) 
with poor survival (P = 0.011) (Fig. 4o).

We repeated the above T cell compartment analysis using only 
samples from participants treated with triplet therapy. While ther-
apy itself cannot impact the baseline immune composition, it can 
influence outcomes. These analyses showed enrichment of Tn CD8+ 
cells and B cells in NPs, whereas RPs on triplet therapy were enriched 
for differentiated T cells, including CD8_Teff and CD8_Teff_HLA 
(Extended Data Fig. 5e).

RPs with SR profiles showed an accumulation of apoptotic 
CD8+ T cells and M2 macrophages
Considering the cellular alterations observed across cytogenetic and 
progression-based groups, we next sought to determine whether 
immunologic alterations remained associated with RPs even in par-
ticipants without HR abnormalities. The analysis of SR-RP participants  
(nparticipants = 19) compared to SR-NP participants (nparticipants = 40) 
exhibited significant enrichment of both CD8_Teff_HLA (P = 0.008) 
and CD8_Teff (P = 0.018) populations, along with depletion of CD8+ 
Tn cells (P = 0.007; Fig. 5a). Additionally, these participants also 
depicted enrichment of M2 macrophages (P = 0.023) and depletion of  
naive B cells (P = 0.039) and IFN-stimulated T cell populations 
(P < 0.038) (Fig. 5a).

Because of the observed trends in reduced B cells paired with the 
enrichment of myeloid cells in RPs (Fig. 4b), we investigated the poten-
tial for altered hematopoiesis within the BMME. DGEA on HSCs revealed 
a shift toward myelopoiesis in the RPs, with overexpression of myeloid 
lineage commitment markers, while the NPs exhibited an overexpres-
sion of lymphoid lineage commitment markers, such as SOX4 (Fig. 5b).

Cellular communication analysis depicts IFNγ-driven 
proinflammatory and immunosuppressive changes in 
participants with poor outcomes
To explore potential BMME signaling changes associated with cytoge-
netic risk and disease progression, we investigated intercellular commu-
nication patterns, revealing several key pathways in outcome-associated 
subpopulations (Fig. 5c and Supplementary Table 6). MHC-II expres-
sion was enriched in antigen-presenting cells (B cells, M2 mac-
rophages and cDCs), associated with NPs (Fig. 4e), pointing toward 
an improved adaptive immune response in these groups. We also 
observed increased expression of IFNγ in CD8+ Teff populations 
(CD8_Teff_TNF, CD8_Teff_HLA and CD8_Tem; Figs. 2f,g and 5c,d), 
CD4+ cytotoxic populations (CD4_CTL) and cytomegalovirus (CMV) 
adaptive NK cells (NK_adp). Higher IFNγ receptor expression was 
also observed in the RP-associated immunosuppressive macrophage 
cluster (Macro/Mono). Markedly, CD8_Teff_HLA cells were associated 
with RPs and HR (Figs. 3c and 4f), suggesting that IFNγ signaling in the 

Fig. 4 | Single-cell level alterations in the BMME of MM RPs. a, Stacked bar 
chart of mean per-participant cell type proportions at baseline in RP versus 
NP participants. Clusters are colored by their major cell type and shaded by 
individual clusters. The average proportion of major cell types is shown on the 
graph, normalized as a fraction of all cells, excluding doublets. b, Proportions of 
T, B and myeloid cells per participant by progression groups (RP, nparticipants = 67; 
NP, nparticipants = 83), calculated from total immune cells. Two-sided P values were 
calculated using a linear model adjusting for processing sites. Nonsignificant 
P values > 0.05 are not shown. c, CD14+ monocyte trajectory with differential 
abundance results. Arrows indicate lineage paths from immature Neutrophil_
RPS/RPL. Circles represent clusters, with labels adjacent to each center and 
size representing the number of cells within a cluster. Colors correspond to the 
log odds ratio for RP and NP participants, computed as a fraction of myeloid 
cells. d, A volcano plot displaying the differentially expressed genes between 
NP and RP participants in CD14+ monocytes. The x axis displays the natural log 
fold change and the y axis displays the −log10 two-sided BH-adjusted P value. 
Significantly differentially expressed genes associated with inflammation 
and IFN-I response pathways are shown in red and blue, respectively. e, A bar 
plot displaying GSEA for differentially expressed genes shown in d. The x axis 
shows the NES, with positive values indicating association with NP-enriched 
markers and negative values indicating association with RP-enriched markers. 
Pathways are colored by the sign of the NES and shaded by −log10FDR; those with 
BH-adjusted P values < 0.1 were considered significant. f, Box plots displaying 
the distribution of CD8+ cells (left) and selected significantly enriched T cell 
subtypes (right) as a fraction of CD3+ T cells. Open circles represent individual 
participants. The difference in proportions between RPs (nparticipants = 67) and  
NPs (nparticipants = 83) was assessed using a linear model (two-sided P value).  
g, A volcano plot displaying the differentially expressed genes between NP and 

RP participants in CD3+ T cells. The x axis displays the natural log fold change 
and the y axis displays the −log10 two-sided BH-adjusted P value. Select genes 
are highlighted and colored on the basis of their associated function. h, Bar plot 
displaying GSEA results for the differentially expressed genes shown in g. The 
x axis shows the NES, with positive and negative values indicating association 
with the NP-enriched and RP-enriched markers, respectively. The pathways are 
colored by the sign of the NES and shaded by the −log10FDR; those with  
BH-adjusted P values < 0.1 were considered significant. i, The trajectory of  
CD8+ cells along with differential abundance results. Arrows indicate lineage 
paths from CD8+ Tn cells. Circles represent clusters, with labels shown adjacent 
to each center and size representing the number of cells within a cluster. 
The lineage highlighted in red corresponds to the trajectory associated 
with cytotoxic cells. Colors correspond to the log odds ratio for RP and NP 
participants, computed as a fraction of all CD8+ T cells. j, A density plot showing 
the distribution of cells by pseudotime along the cytotoxicity lineage, from the 
original cluster (CD8_Tn, low pseudotime) to differentiated cytotoxic clusters 
(high pseudotime). k, Smoothed normalized expression along the cytotoxicity 
lineage’s pseudotime for five Tn-associated genes (blue) and five cytotoxicity-
associated genes (red), weighted by Slingshot’s lineage assignment weight.  
l–o, Survival plots displaying the relationship between PFS and the participant’s 
average cytotoxicity signature (l), Tn signature (m), exhaustion signature (n) or 
putative T cell dysfunction signature (o) scores across CD3+ T cells. Significance 
values were determined using two-sided P values from a Cox proportional 
hazards (PH) model. For the survival curves, participants were binned into groups 
with ‘high’ (brown) or ‘low’ (blue) expression, with the cutoff determined using 
maximally selected rank statistics. In the box plots, the middle bar represents the 
median, lower and upper hinges correspond to first and third quartiles and upper 
whiskers extend to the largest value no further than 1.5× the IQR.
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BME may contribute to inflammatory alterations in the monocytes 
of RPs. Notably, the RP-associated cluster (Macro/Mono; Fig. 4c and 
Extended Data Fig. 5c) was also found to express BAG6, an inhibitor of 
NK-mediated cytotoxicity in its soluble form, and well-documented 
molecules in MM oncogenesis and progression, thrombospondin-1 
(THBS1) and a proliferation-inducing ligand (APRIL). In contrast, the 
IFN-I-associated monocyte cluster, associated with NP participants 
(Fig. 4c and Extended Data Fig. 5c), was found to highly express B 
cell-activating factor (BAFF), an essential promoter of B cell survival 
and terminal differentiation. Previous studies also reported BAFF 
expression associated with IFN-I signaling across multiple diseases22. 
BAFF can bind to transmembrane activator and CAML interactor (TACI) 
expressed on plasma cells, although it has a much higher affinity to 
BAFF-R expressed on the mature B cell populations.

Given that IFNγ overexpression in the T cell compartment 
correlates with RPs, we further investigated IFNγ expression in SR 
participants and its relationship to outcomes. SR-RPs also showed sig-
nificantly higher average IFNγ expression across their T cell compart-
ment (Fig. 5e), associated with poor outcomes (Fig. 5f). Furthermore, 
CD14+ monocytes of SR-RPs had significantly higher IFNγ receptor (that 
is, IFNGR2) expression (Fig. 5g), which was also associated with poor 
outcomes (Fig. 5h). These findings appeared to indicate that height-
ened IFNγ expression before therapy may be a prognostic indicator 
of poor outcomes.

In a systems biology analysis, we further investigated gene regula-
tory networks (GRNs), particularly focusing on myeloid subpopula-
tions associated with HR and disease progression (for example, CD14+ 
Mono_IFN) and identified enrichment of GRNs for IFN regulatory factor 
2 (IRF2), IRF7, IRF9 and signal transducer and activator of transcription 
1 (STAT1) transcription factors (TFs) (Fig. 5i–k, Extended Data Fig. 6 
and Supplementary Table 7). These TFs are regulated by IFNα and pro-
mote the transcription of IFNα-stimulated genes, including ISG15 
(refs. 23,24). Examining the survival association of IRF7 regulon activ-
ity within the myeloid compartment, we observed that participants 
with increased IRF7 regulon activity exhibited better outcomes (Cox 
proportional hazards (CoxPH) P = 0.005; Fig. 5j). Additionally, regula-
tory networks of cell proliferation related to E2F1 and E2F8 TFs were 
enriched in the granulocyte-monocyte progenitor (GMP) population 
(Fig. 5i,k), elevated in RPs (Fig. 5a). Increased E2F8 regulon activity was 
linked with poor survival outcomes within the myeloid compartment, 
aligning with our previous observation of increased myelopoiesis in 
RPs (CoxPH P = 0.034; Fig. 5j).

Independent validation of BM immune landscape features that 
are predictive of myeloma outcomes
To independently validate immune microenvironment alterations 
associated with clinical outcomes, we analyzed an additional 74 sam-
ples from participants with NDMM as a validation cohort (Fig. 6a). This 
effort produced high-quality scRNA-seq data comprising approxi-
mately 247,928 cells after integration, clustering and batch correction 
(Fig. 6b and Extended Data Fig. 7a). The validation cohort identified 
all major immune cell types of BM, with T cells being the most fre-
quent, followed by B cells, myeloid cells and plasma cells (Fig. 6b,c 
and Extended Data Fig. 7b–i). Further comparative analysis of cellular 
abundances between the validation and discovery cohorts revealed 
striking similarities, reinforcing the robustness and reliability of the 
validation cohort (Fig. 6d). The validation cohort depicted PFS similar 
to the discovery cohort, consisting of a nearly equal number of RPs  
(nparticipants = 29) and NPs (nparticipants = 35) (Fig. 6a). According to the 
Davies risk definition, the validation cohort contained 34 HR sam-
ples, although cytogenetic abnormalities were mostly restricted 
to gains of 1q21 or NSD2 (Fig. 6a and Extended Data Fig. 1b,c). In the 
validation cohort, RPs depicted significant enrichment of CD8+ Teff 
cells (P = 0.045), including CD8+HLA+ Teff cells (P = 0.036; Fig. 6d), 
and reductions in immature B cells (P < 0.020; Fig. 6d), consistent 
with the discovery cohort. We also observed the enrichment of M2 
macrophages (P = 0.0095), previously observed in the RPs with SR 
(Fig. 5a). The enrichment of CD8+HLA+ Teff cells (CD8_Teff_HLA) also 
depicted a trend toward poorer OS (P = 0.07; Fig. 6e) and PFS (P = 0.01; 
Fig. 6f), supporting discovery cohort results. Further DGEA depicted 
significant overexpression of cytotoxicity-associated markers and 
downregulation of Tn markers in the RPs (Fig. 6g). The validation cohort 
also showed a shift toward cytotoxic CD8+ and Tn cell populations in 
RPs and NPs, respectively (Fig. 6h). Additionally, the validation cohort 
also confirmed discovery cohort findings, demonstrating higher T cell 
cytotoxicity scores (P = 0.030, hazard ratio = 1.07; Fig. 6i) and putative 
dysfunctional scores (P = 0.028, hazard ratio = 1.14; Fig. 6j) with poor 
outcomes. These findings underscore the association of terminally 
differentiated T cell enrichment with rapid progression of myeloma 
and poor outcomes.

Integrating baseline immune signatures with cytogenetic risk 
improves our ability to predict outcomes
To test the hypothesis that immune risk is nonparallel to cytogenetic 
risk, we aimed to assess the ability of immune clusters or signatures to 

Fig. 5 | Pathway and systems biology analysis to decipher mechanisms 
of poor outcomes in MM. a, Top: differential cell population abundances 
stratified by composite cytogenetic risk (HR versus SR), progression (RP versus 
NP) and progression within the subsets of SR participants (SR: RP versus NP) 
and HR participants (HR: RP versus NP). The color indicates the linear model 
coefficient fitted to logit-transformed proportions, with orange indicating 
higher abundance in the first group of each comparison and blue indicating 
lower abundance. Shapes indicate the two-sided P value for the coefficient, with 
circles representing no significant difference, diamonds representing P < 0.05 
and squares representing P < 0.01. Proportions were computed as a fraction of 
all immune cells excluding plasma cells, erythroid cells and doublets. Bottom: 
average normalized scores for select immune signatures (Supplementary Table 4)  
across the various cell populations. b, Bar graph of differentially enriched 
markers within the CD34+ HSC population. The log2 fold change values are 
relative to RPs, with overexpressed genes in orange and downregulated genes 
in blue. c, Heatmap of intercellular communication depicting key patterns of 
outgoing (top) and incoming (bottom) signaling between cell types. All cell 
types, including plasma cells, were included, although some populations were 
combined to simplify the interpretability of the cell communication analysis 
(Supplementary Table 6). Each row corresponds to a ligand–receptor pair. The 
heatmaps show relative strength of outgoing signals (top; ligand expression) 
and the corresponding incoming signals (bottom; receptor expression) by 
each cell type. d, Chord diagram indicating the IFNγ signaling network in all 

cells. Chords are colored by the ‘sender’ cell type (ligand) and point toward the 
‘receiver’ cell type (receptor). e–h, Average expression of IFNγ in T cells (e,f) 
and IFNγR2 in CD14+ monocytes (g,h) and their associations with outcome in 
SR participants. Box and violin plots (e,g) compare the per-participant average 
expression between SR-NP and SR-RP participants, with each dot representing 
a participant. P values were calculated using a two-sided Wilcoxon rank-sum 
test. In the box plots, the middle bar represents the median, lower and upper 
hinges correspond to first and third quartiles and upper whiskers extend to the 
largest value no further than 1.5× the IQR. Kaplan–Meier curves (f,h) display the 
association between expression level and PFS, stratified by median expression 
(high, above the median; low, below the median). Hazard ratios and two-sided 
P values were estimated using CoxPH models. i, Heatmap showing normalized 
average AUC scores for transcriptional regulons on selected myeloid 
populations. Additional columns display hazard ratios and two-sided P values, 
from CoxPH models fitted on average participant AUC scores categorized 
into high and low activity using a cutpoint approach. j, Survival plots display 
survival associations between regulon activity in the myeloid compartment and 
participant outcomes, where high E2F8 regulon expression (bottom) and low 
IRF7 regulon expression (top) are associated with poor outcomes. The two-sided 
P values from Cox models are shown. k, Feature plots of the per-cell AUC values 
for IRF7 (left) and E2F8 (right) TF regulons across key myeloid populations. Blue 
indicates low activity (or AUC) and red indicates high activity. The color bar 
represents the regulon enrichment score.

http://www.nature.com/natcancer


Nature Cancer

Resource https://doi.org/10.1038/s43018-025-01072-4

NS
(P < 0.05)
(P < 0.01)–0.3

–0.2
–0.1
0
0.1
0.2
0.3

–3
–2
–1
0
1
2
3

log odds ratio
N

orm
alized

signature score

HR: RP versus NP
SR: RP versus NP

RP versus NP
HR versus SR

CD8+ T cella

b c

CD4+ T cell Myeloid B Cell Other NK cell

HLA
IFN1

SASP
DysfunctionalT

ExhaustedT
CytotoxicT

NaiveT

C
D

8_
Tn

C
D

8_
Tc

m
C

D
8_

Tc
m

_G
ZM

K
C

D
8_

Te
m

C
D

8_
Te

m
_N

FK
B

M
AI

T
C

D
8_

Te
�_

H
LA

C
D

8_
Te

�
C

D
8_

Te
�_

b
C

D
8_

Te
�_

c
C

D
8_

Te
m

_IF
N

C
D

8_
T_

ad
p

C
D

8_
T_

ad
p_

b
C

D
8_

Te
�_

TN
F

C
D

8_
T_

Ap
op

to
tic

C
D

4_
Tn

C
D

4_
Tc

m
_IF

N
Tr

eg
C

D
4_

Tc
m

_K
LR

B1
C

D
4_

Te
�

C
D

4_
Tc

m
_N

FK
BI

A
C

D
4_

Te
m

_IF
N

C
D

4_
Th

C
D

4_
Te

�_
TN

F
C

D
4_

C
TL

C
D

4_
Th

_L
EF

1

G
M

P
G

ra
nu

lo
cy

te
C

D
14

+M
on

o_
S1

00
A

M
ac

ro
/M

on
o

C
D

14
+M

on
o_

IF
N

C
D

14
+M

on
o_

C
TS

S
C

D
14

+M
on

o_
pr

o-
in

fla
m

cD
C

2
pD

C
s_

b
C

D
14

+M
on

o_
hy

po
N

eu
tr

op
hi

l_
RP

S/
RP

L
cD

C
1

N
eu

tr
op

hi
l_

AR
G

1
C

D
16

+M
on

o
M

2_
M

ac
ro

B_
pr

o
B_

pr
eL

g
B_

pr
eS

m
B_

im
m

B_
tr

ns
B_

na
iv

e
B_

U
ns

w
itc

he
d_

m
em

B_
m

em H
SC

pD
C

s_
a

Fi
br

o

N
K_

re
si

de
nt

N
K_

C
D

56
br

ig
ht

N
K_

ad
p

N
K_

C
D

56
di

m

–0.1

0

0.1

CD164 KLF6 SOX4 CD34 KIT KLF2 EGR1 ANXA1 AREG

lo
g 

fo
ld

 c
ha

ng
e

–0.1
0
0.1

NP

RP

log fold change

MyeloidLymphoid

MHC−II/CD4
IFNG/IFNGR

(CCL5,CCL3)/CCR1
CD86/(CD28, CTLA−4)

TNF/TNFRSF1B
BAFF/(BAFF−R, TACI)
APRIL/(BCMA, TACI)

CXCL12/CXCR4
THBS/(CD36,CD47)

BAG6/NCR3
M−CSF/CSFR1

Chemerin/ChemR23
CD40LG/(ITGAM+ITGB2)

FLT3L/FLT3

0
2
4

MHC−II/CD4
IFNG/IFNGR

(CCL5,CCL3)/CCR1
CD86/(CD28, CTLA−4)

TNF/TNFRSF1B
BAFF/(BAFF−R, TACI)
APRIL/(BCMA, TACI)

CXCL12/CXCR4
THBS/(CD36,CD47)

BAG6/NCR3
M−CSF/CSFR1

Chemerin/ChemR23
CD40LG/(ITGAM+ITGB2)

FLT3L/FLT3

B_
im

m
B_

na
iv

e
B_

m
em

C
D

4_
Tn

C
D

4_
Th

C
D

4_
Tc

m
C

D
4_

Te
m

C
D

4_
Te

�
C

D
4_

C
TL

Tr
eg

C
D

8_
Tn

C
D

8_
Tc

m
C

D
8_

Te
m

C
D

8_
Te

m
_N

FK
B

C
D

8_
Te

m
_IF

N
C

D
8_

Te
�

C
D

8_
Te

�_
b

C
D

8_
Te

�_
c

C
D

8_
Te

�_
H

LA
C

D
8_

Te
�_

TN
F

C
D

8_
ad

p
C

D
8_

ap
op

t
M

AI
T

N
K_

C
D

56
br

ig
ht

N
K_

C
D

56
di

m
N

K_
ad

p
N

K_
re

s
M

ye
lo

id
_Im

m
at

ur
e

m
N

eu
t

nc
M

on
o

cM
on

o
M

ac
ro

_M
on

o
M

on
o_

IF
N

A
M

on
o_

H
yp

ox
M

on
o_

In
fla

m
M

2 
_M

ac
ro

cD
C

s
pD

C
s

M
eg

aK
M

as
t

H
SC

Fi
br

ob
la

st
s

Er
yt

hr
oc

yt
es

Pl
as

m
a 

ce
lls

0
2
4
6
8

Re
la

tiv
e 

st
re

ng
th

0

1

Incoming signaling patterns

Outgoing signaling patterns

B_imm
B_naive

B_mem

CD4_TnCD4_Th
CD4_Tcm

CD4_Tem

CD4_Te�

CD4_CTL

Treg

C
nT

_8
D

C
D

8_
Tc

m

C
D8

_T
em

CD
8_

Te
m

_N
FK

B

CD
8_

Te
m

_IF
N

CD8_
Te

�

CD8_Te
�_b

CD8_Te
�_c

CD8_Te�_HLA
CD8_Te�_TNFCD8_adpCD8_apopt

MAIT

Myeloid_Immature

mNeut

ncMono

cMono

Macro_Mono

Mono_IFNA

Mono_Hypox
M

ono_Inflam
M

2 _M
acro

cDC
s

N
K_C

D
56bright N

K_
C

D
56

di
m

N
K_

ad
p

N
K_

re
s

pD
Cs

Meg
aK

Mast

HSC

Fibroblasts

Erythrocytes

Plasma

IFNγ signaling patterns

NK

Mye
loid

Other

B cell

CD4
+ T cell

CD8+
 T 

ce
ll

0.00974

0

0.5

1.0

1.5

2.0

NP RP

Pe
r-

pa
rt

ic
ip

an
 a

ve
ra

ge
 e

xp
re

ss
io

n
ac

ro
ss

 T
 c

el
ls

IFNG

0.00378

1

2

3

4

NP RP

Pe
r-

pa
rt

ic
ip

an
t a

ve
ra

ge
 e

xp
re

ss
io

n
ac

ro
ss

 C
D

14
+  M

on
o

IFNGR2

Hazard ratio
2.084
CoxPH P = 0.003

0.2

0.4

0.6

0.8

1.0

0 1,000 2,000 3,000

Time (days)

0 1,000 2,000 3,000

Time (days)

Pr
og

re
ss

io
n-

fr
ee

 s
ur

vi
va

l

High
Low

High
Low

T cell IFNG expression
(SR participants)

Hazard ratio 1.875
CoxPH P = 0.045

0.25

0.50

0.75

1.00

Pr
og

re
ss

io
n-

fr
ee

 s
ur

vi
va

l

CD14+ monocyte IFNGR2
expression

(SR participants)

BRCA1(+) [101 g]

CD14
+ Mono_

IFN

CD14
+ Mono_

pro
−in

fla
m

Mac
ro/M

ono
GMP

Haz
ard

rat
io

COX Pva
l

E2F1(+) [101 g]

E2F8(+) [63 g]

KLF9(+) [15 g]

IRF1(+) [50 g]

IRF2(+) [115g]

IRF7(+) [130 g]

IRF9(+) [25 g]

STAT1(+) [55 g]

0.25

0.50

0.75

1.00

0
1,0

00
2,0

00
3,000

Time (days)

0
1,0

00
2,0

00
3,000

Time (days)

Pr
og

re
ss

io
n-

fr
ee

 s
ur

vi
va

l

0.25

0.50

0.75

1.00

Pr
og

re
ss

io
n-

fr
ee

 s
ur

vi
va

l
High
Low

IRF7(+) [130 g]

E2F8(+) [63 g]

<0.01
<0.05
<0.10

COX
P value

−0.5
0
0.5
1.0

AUC (Z)

CD14+Mono_pro−inflam
Macro/Mono

CD14+Mono_IFN

GMP

E2F8(+) [63 g]

GMPMacro/Mono
CD14+Mono_pro−inflam

CD14+Mono_IFN

−6

−3

0

3

−5 0 5 10

UMAP1
−5 0 5 10

UMAP1

U
M

AP
2

−6

−3

0

3

U
M

AP
2

0.025
0.050
0.075
0.100

0.025
0.050
0.075
0.100

IRF7(+) [130 g]

HR

0.9
1.2
1.5

CoxPH: 
P = 0.005

CoxPH: 
P = 0.034

d

e f i

g h k

j

http://www.nature.com/natcancer


Nature Cancer

Resource https://doi.org/10.1038/s43018-025-01072-4

predict disease progression in a univariate and multivariable framework 
while also including covariates such as age, sex, stage and cytogenetic 
risk. We used a bootstrapping approach to ensure model robustness and 
used three different statistical methods (elastic net, logistic regression 
and Cox models) to validate findings on an independent cohort (Fig. 7a).

Clinical data alone yielded an area under the curve (AUC) value 
of 0.7 in predicting PFS (Fig. 7b,c). Incorporating cytogenetic risk 
with clinical variables (stage and demographics) increased the PFS 
prediction to 0.73 (Fig. 7b,d). Similarly, the predictive power of any 
single immune subcluster combined with clinical variables only mar-
ginally improved prediction (AUC = 0.75; Fig. 7b,e). Iterative feature 
selection combining subsets of BMME immune clusters with clinical 
covariates and cytogenetics improved the average AUC for predict-
ing PFS (Fig. 7b,f,g). Specifically, combining Immune Atlas clusters, 
clinical variables and cytogenetics resulted in AUC values ranging 
from 0.75 (any given subcluster) to 0.96 (all subclusters), contingent 
on the number of subclusters considered during modeling (Fig. 7b,g). 
This substantial increase in AUC by combining clinical and immune 
features (Extended Data Fig. 8a–c) further highlights the importance 
of the BMME. Although marginal differences in AUC were observed 
among individual cell clusters alone, integrative models showcased 
a notable advantage over simpler models (Extended Data Fig. 8a–c 
and Supplementary Table 8). Lastly, we identified the most relevant 
11 subclusters selected using an elbow test on predictive power versus 
number of clusters, resulting in a model with high precision and recall 
(AUC = 0.81; Fig. 7b,f,h). This model for stratifying participants into pro-
gressors (Ps) and NPs (Fig. 7b,f,h) included differentiated T cytotoxic 
populations (CD8_Teff and CD8_Teff_HLA) along with inflammatory 
myeloid populations (CD14+ Mono_ProInflam) (Fig. 7h).

Next, we investigated the predictive ability of immune cell pop-
ulations toward OS. Using the same approach as for PFS described 
above, we identified that OS was predicted at lower true positive rates 
than PFS (Extended Data Fig. 8d). Furthermore, cytogenetics pro-
vided little improvement over models using simple demographics 
(Extended Data Fig. 8e,f). Yet, integrative models, including immune 
subclusters, improved the predictions slightly with values around 0.7, 
although not as strongly as observed for PFS (Extended Data Fig. 8g,h). 
Consistent with the PFS model, we identified populations significantly 
associated with OS that included HSCs, T cells and megakaryocytes 
(Extended Data Fig. 8i).

To further independently validate our finding of immune BM clus-
ters’ importance in improving PFS and OS prediction, we investigated 
our validation cohort of 74 participants with NDMM. The investigation 

of key clinical variables and cell proportions revealed that ASCT status 
was a strong confounder of PFS and OS outcomes in the validation 
cohort. To remove the confounding effects of ASCT, we modeled PFS 
and OS with and without this confounder to investigate this effect and 
rule out that our models were biased for validation by not including it 
in the prediction models for PFS (Fig. 7i and Extended Data Fig. 8j–o) 
and OS (Extended Data Fig. 8p–t). The PFS prediction model excluding 
ASCT status achieved an AUC of 0.80 (Fig. 7i and Extended Data Fig. 8n) 
by incorporating key immune clusters, representing a significant 
improvement over the combined prediction based on age, ISS and 
cytogenetics alone18. This underscores the synergy and critical role of 
immune clusters in predicting myeloma progression.

Integrating the minimal (nclusters = 11) immune subset signature 
from the discovery cohort to our validation cohort exceeded expec-
tations by revealing that the prediction of PFS and OS increased 
to AUC values of 0.94 (Fig. 7j and Extended Data Fig. 8o) and 0.73 
(Extended Data Fig. 8r,t), respectively. These results clearly show 
the potential biases of clinical covariates and demonstrate that 
integrative scores using clinical data and genomic and immune 
cell populations can potentially enhance risk stratification and 
outcome prediction.

Lastly, to further investigate the robustness of the signature 
against other proposed cytogenetic risk criteria, we investigated 
whether immune populations could add to the prognostic capabil-
ity of the recently proposed International Myeloma Working Group 
(IMWG) criteria as an alternative to the previously used Davies risk 
definition25 (Extended Data Fig. 9a–j and Supplementary Table 1). Top 
predictive subclusters included many of the same immune populations, 
including CD8+HLA+ T cells and CD8+ Teff cells (Extended Data Fig. 9h). 
Integrating these immune populations with the clinical and cytogenetic 
variables outlined by the IMWG significantly improved the predictive 
AUC from 0.73 (Extended Data Fig. 9d) to 0.80 (Extended Data Fig. 9f,i). 
This finding further highlights the unbiased and critical impor-
tance of the immune microenvironment in accurately predicting 
myeloma progression.

Discussion
In this study, we generated a comprehensive single-cell Immune Atlas 
of the myeloma BMME by profiling ~1.4 million cells, capturing diverse 
cell states, including rare subtypes, such as cytotoxic CD4+ T cells, 
mast cells, HSCs and fibroblasts. This enabled deciphering BMME 
variations among participants with diverse risk profiles and outcomes; 
notably, these participants were not treated with recently approved 

Fig. 6 | Terminally differentiated and senescent T cells predict poor outcomes 
in an independent validation cohort of 74 participants. a, Characteristics of 
the validation cohort. Left: scRNA-seq analysis on CD138− BM of 74 participants 
with NDMM yielded 247,928 high-quality cells. Middle: PFS curves comparing the 
discovery (gray) and validation (red) cohorts. Dashed lines indicate the median 
survival time for each cohort. The adjacent box plot indicates the number of 
RPs and NPs in the validation cohort. Right: number of participants from the 
validation cohort with different HR abnormalities per the Davies risk definition. 
prob., probability. b, UMAP embedding of 247,928 CD138− BMME cells from the 
validation cohort (Fig. 2a). Major cell types are shown in consistent colors with 
the discovery cohort, with shades representing different cell states and subtypes. 
c, Correlation of cellular abundances between discovery and validation cohorts. 
Points represent individual cell types and subtypes, with colors corresponding to 
the Kendall correlation coefficient. The shaded region represents the 95% CI.  
d, Top: differential abundance analysis of RPs vs NPs in the validation cohort. 
Colors indicate the log odds ratio derived from a linear model on logit-
transformed proportions, adjusting for the study site, with orange indicating 
higher abundance in RP and blue indicating lower abundance. Shapes indicate 
the two-sided P value for the coefficient, with circles representing no significant 
difference, diamonds representing P < 0.05 and squares representing P < 0.01. 
Proportions were estimated as a fraction of all immune cells. Bottom: average 
normalized signature scores for select immune signatures (Supplementary 

Table 4) across immune populations. e,f, Survival analysis of CD8+ Teff HLA+ cell 
abundance, as a fraction of all CD8+ cells, for OS (e; P = 0.07, log-rank test) and 
PFS (f; P = 0.011, log-rank test). g, Volcano plot of the differentially expressed 
genes across CD3+ T cells in the validation cohort between RPs (right) and NPs 
(left). The x axis shows the batch-corrected log2 fold change, with positive values 
corresponding to higher expression in RP participants and negative values 
corresponding to higher expression in NP participants. The y axis shows the 
−log10 BH-adjusted P value based on a two-sided test using a linear model fit to 
log-normalized expression. Vertical dashed lines mark the log2 fold change ± 0.1 
and the horizontal dashed line marks adjusted P = 1 × 10−50. Certain genes are 
highlighted on the basis of their functional role (red, cytotoxic or cytolytic; blue, 
IFN-I; green, Tn cell; yellow, stress). h, Pseudotime trajectory of CD8+ T cells, with 
arrows indicating the paths along the trajectory originating at CD8+ Tn cells. 
Circles represent clusters and colors indicate the log odds ratio of proportion as 
a fraction of CD8+ T cells between RP and NP participants, with orange showing 
higher abundance in RP and blue showing higher abundance in NP. i,j, Survival 
plots of PFS associated with the participant’s average cytotoxicity signature 
score (i) or average dysfunction signature score (j) across all CD3+ T cells. CoxPH 
models were fit on continuous signature scores, with hazard ratios and two-sided 
P values reported. For the survival curves, participants were binned into groups 
with high or low expression, with the cutoff determined using maximally selected 
rank statistics.
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immunotherapies, suggesting that the immune system has a broad, 
treatment-independent role in myeloma outcomes.

The BMME analysis by stratifying participants on the basis of indi-
vidual HR abnormalities emphasized the heterogeneous impact of T, 
myeloid and B cell compartments. Participants with HR abnormalities 
except 17p13 deletion demonstrated a reduction in IFN-stimulated cell 
populations and expression. Interestingly, participants with 17p13 
deletion had universal elevation of IFN-I-associated genes in T cells, 
other immune cells and malignant plasma cells. Acute IFN-I stimula-
tion is crucial for mounting an effective antitumor immune response26 
through the activation of pathways such as cGAS–STING27 but lesions 
such as 1q21 gain or amplification may block this, enabling immune 
evasion and progression28. Conversely, as IFN-I’s apoptotic and senes-
cent effects often depend on p53 (refs. 29,30), del(17p13) may allow 
tumors to persist despite IFN-I overactivation, with chronic activity 
potentially impairing T cells31. Ultimately, these data underscore the 
complex interactions between HR cytogenetic alterations and critical 
antitumor pathways such as IFN-I, emphasizing the need to balance 
IFN-I signaling for therapeutic benefit. Agents such as bortezomib 
capable of acutely activating the IFN-I response might synergize with 
immunotherapies to boost antitumor response in persons with 1q21 
gain or NSD2 abnormalities32. Strategies to alleviate immune impair-
ment from chronic IFN-I signaling, such as checkpoint inhibitors tar-
geting exhaustion markers (for example, PD1 and LAG3), could restore 
T cell function and counteract immune suppression in persons with 
17p13 deletion. Kawano et al. already showed that IFNAR1 inhibition 
results in MM-driven Treg expansion and activation33, thereby reducing 
immunosuppressive function and myeloma progression.

The T cell compartment of RPs displayed an accumulation of termi-
nally differentiated CD8+ Teff cells, specifically late-activated cytotoxic 
cells, with reduced Tn populations (Fig. 7k). This state is sometimes 
referred to as immunosenescence, with low levels of cytotoxicity, inhib-
itory KIR and KLRG1 genes and a lack of costimulatory receptors CD27 
and CD28, resulting in impaired antigen-mediated proliferation34–38. 
Additionally, studies have indicated that the immunomodulatory 
effects of drugs such as IMiDs may be through the costimulatory CD28+ 
pathway39; therefore, this population may show a diminished response 
to standard first-line therapies, potentially leading to poorer outcomes. 
Depletion of the Tn pool can be driven both by thymic involution40,41 or 
by antigenic pressure driven from either myeloma cells or other chronic 
infections such as CMV or Epstein–Barr virus42–44. Impairment of Tn 

cells reduces the TCR repertoire clonality38,45, which is typically associ-
ated with worse outcomes in various malignancies46,47. Additionally, 
accumulation of these differentiated T cell populations contributes 
to the inflammatory microenvironment through the production of 
cytokines such as IFNγ, which we observed highly expressed in the 
HLADR+CD28− population associated with both HR and poor outcomes. 
Unlike exhaustion, it is not well understood whether this senescent 
state can be reversed, although some studies have indicated that it 
may be possible48. Given that immune therapies could aggravate the 
T cell imbalance, it may be better to use more targeted therapies, such 
as bispecific antibodies and CAR-T cells, as the first line of therapy, 
rather than only in the relapsed setting.

In addition to T cell alterations, RPs displayed a shift toward mye-
lopoiesis in the BM, reflected by general depletion of the B cell compart-
ment, including the BM-native immature populations, compensated 
for by the enrichment of the myeloid compartment. Myelopoiesis in 
the BM can be driven by stress or inflammation that drives HSCs to 
differentiate toward myeloid lineages at a higher frequency49. Myeloid 
cells are also a major source of inflammatory cytokines promoting 
tumor survival, immunosuppression or angiogenesis, as observed in 
RPs, displaying enrichment of senescent-associated secretory profile 
factors, including IL-8, CCL3 or IL-1β50. The increased expression of 
these proinflammatory and immunomodulatory molecules aligns with 
previous findings, which identified neutrophils as major mediators of 
cytokine and chemokine signaling promoting the inflammatory BMME 
in NDMM51 (Extended Data Fig. 9k). The enrichment of these inflamma-
tory factors may be related to IFNγ produced by the expanded CD8+ Teff 
cell populations, as the inflamed myeloid cells both express the recep-
tor IFNGR2 and the TF IRF1, which is associated with IFNγ activity52.

Cell–cell communication analysis identified both BAFF (TNFSF13B) 
and APRIL (TNFSF13) expression in the myeloid compartment. BAFF 
expression was primarily associated with myeloid populations 
enriched in NPs such as IFN-associated monocytes. BAFF can bind to 
TACI expressed on plasma cells, although it has a much higher affinity to 
BAFF-R expressed in mature B cell populations to promote their differ-
entiation and survival. Conversely, APRIL was most strongly associated 
with the Macro/Mono population enriched in RPs. APRIL is known to 
bind to TACI (TNFRSF13B) on malignant plasma cells, promoting their 
survival and MM progression53,54.

Cytogenetics alone demonstrated positive predictive capa-
bilities, yet integrating information from the BMME could enhance 

Fig. 7 | Prediction of MM progression by integration of cytogenetic risk along 
with immune signatures. a, Schematic of variables tested (immune signatures, 
cytogenetics and clinical variables (covariates)) and the three regression 
strategies used (elastic net, logistic regression and Cox), followed by bootstrap 
validation used for model selection. b, Receiver operating characteristic curves 
for progression prediction models based on single clusters, clinical variables 
and cytogenetics or Immune Atlas variables alone and in combination. Curves 
are colored by model. The labels indicate subclusters (SubC) and covariates 
(CoV), including age, batch, site, ISS and cytogenetic. c–e, Kaplan–Meier 
curves showing the separation of participants by predicted PFS based on 
age, ISS stage and batch (c), cytogenetics, age, ISS stage and batch (d) and 
Immune Atlas signatures, age, ISS stage and batch (e). f,g, Kaplan–Meier 
curves showing the separation of participants when cytogenetic risk scores 
are combined with the best 11 predictive Immune Atlas subclusters (f) or with 
all 83 subclusters (g). h, Importance of immune subclusters for predicting 
the progression. The clusters with better and poor MM outcomes are shown 
with blue and red colors, respectively. The red dashed line marks the P value 
threshold of 0.1 from the ANOVA Wald chi-squared test. i, PFS predictive model 
with 11 predictive immune clusters, excluding ASCT, in the discovery cohort 
stratifying participants by high versus low risk (AUC = 0.80). j, Validation of 
the PFS predictive model based on 11 immune clusters and clinical covariates 
(excluding ASCT) on an independent validation cohort of 74 participants 
with NDMM. The model demonstrates excellent performance in stratifying 
participants at higher risk of progression from a low-risk category, achieving 

an AUC of 0.94. All survival curves display the two-sided P value from a log-
rank test. k, Summary of the key cellular subtypes and signaling pathways 
comprising the MM BMME and their association with participant outcomes. 
Within the aging BM, a state of chronic inflammation, known as ‘inflammaging’, 
results in altered lymphoid and myeloid cell populations, enabling immune 
escape of malignant plasma cells. Within the T cell compartment, participants 
with MM showing poor outcomes exhibit a shift toward immunosenescent 
and late-activated CD8+ T cells, producing type 2 interferon (IFN-II) that drives 
senescence-associated and immunosuppressive phenotypes in myeloid 
compartment. In contrast, participants with MM showing better outcomes 
display highly proliferative Tn and Tcm CD8+ subsets, in addition to enriched 
Th populations driven by increased MHC-II antigen presentation among 
myeloid cells. T cell and myeloid populations in these participants appear 
to be stimulated by IFN-I, in contrast to participants with poor outcomes 
exhibiting enrichment of IFN-II signaling. This difference in IFN stimulation 
appears to be linked to participant outcomes, in part, through the differential 
expression of BAFF by IFN-I-stimulated monocytes and APRIL by IFN-II-
stimulated monocytes. Notably, BAFF preferentially binds to mature B cells 
to promote survival, potentially enhancing B cell-mediated immunity and 
leading to improved outcomes. Conversely, APRIL has been shown to inhibit 
memory B cell function and promote malignant plasma cell survival. This 
dysregulation is further highlighted in the shift from B cell development toward 
increased myelopoiesis in participants with poor outcomes. k was created with 
BioRender.com.
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stratification and guide optimal therapeutic selection. We observed 
that the prevalence of differentiated BMME immune cell populations 
could predict outcomes with good accuracy in our cohort regard-
less of cytogenetics. Importantly, combining tumor cytogenetics 
and immune signatures can significantly improve the accuracy in 
stratifying myeloma outcomes. Participants with immunosenescent 
and inflamed BMME might have poor overall or event-free survival 
even with a favorable genetic makeup. Therefore, we posit that future 
treatments targeting the immune microenvironment could improve 
outcomes of myeloma. This observation can elevate the importance 
of capturing the BMME as a prognostic marker for MM. Increasing the 
studies capturing such information at the cohort scale could enable 
us to establish a new generation of comprehensive risk scores or 
the derivation of simplified lower-cost assays that focus only on the 
most informative populations. Furthermore, these data may iden-
tify ancillary therapeutic targets that improve the efficacy of cur-
rent treatment strategies and may contribute to rationally designed, 
personalized treatment regimens based on both the tumor and the 
immune microenvironment.

This study created an extensive and comprehensive resource 
to map the granular cellular landscape of myeloma from baseline 
samples. However, the study had multiple limitations, including only 
studying gene expression, and did not include any proteomic or func-
tional profiling. Additionally, the study lacked information on T cell 
repertoire profiling, which is crucial for understanding the expansion 
of antitumor T cell clones. This expansion is particularly important 
when analyzing longitudinal samples to ascertain treatment responses 
rather than relying solely on baseline NDMM samples profiled in this 
study. Future comparison of the findings herein against age-matched, 
non-MM biopsies could inform how aging contributes to alterations 
in the BMME.

This study highlights the importance of the immune landscape 
in better stratification of persons with myeloma in addition to tumor 
alterations. This paradigm can enable us to better understand the 
combinations of factors that influence outcomes in MM and move 
closer to the goal of optimizing therapy for each individual to ensure 
the best outcomes.

Methods
Ethics approval and participant consent
All samples for the study were obtained from the MMRF CoMMpass 
clinical trial (NCT01454297). Procedures involving human participants 
as part of this trial were performed according to the ethical standards of 
the MMRF research committee. Written informed consent was obtained 
from participants for the collection and analysis of samples and clini-
cal information by the MMRF. The institutional review board at each 
participating medical center approved the study protocol. The list of 
participating institutes that approved the study protocol is available 
from ClinicalTrials.gov (NCT01454297).

Experimental model and human subject details
A total of 337 CD138− MM BM mononuclear cell samples were col-
lected from participants with MM enrolled in the MMRF CoMMpass 
study (NCT01454297) and profiled in the discovery (n = 263) and 
validation (n = 74) phases. Participants enrolled in the study were 
monitored through quarterly checkins for up to 8 years following 
initial disease diagnosis. All participants were required to be eligi-
ble for either standard triplet therapy (IMiD, PI and glucocorticoid) 
or doublet therapy. Most participants received triplet therapy in 
their first line of therapy. Participants’ information is available in 
Supplementary Table 3 for the discovery and validation cohorts. 
Samples were acquired before therapy (baseline) and after therapy 
(relapse or remission) and then processed at four institutions: Emory 
University, Mayo Clinic Rochester, Icahn School of Medicine at Mount 
Sinai and Washington University.

CD138− cell isolation and cryopreservation of cell samples
BM aspirates from the MM Research Consortium tissue bank were 
separated into CD138+ (myeloma cells) and CD138− (immune, BM cells) 
fractions using immunomagnetic cell selection targeting CD138 sur-
face expression (automated RoboSep and manual EasySep from Stem-
Cell Technologies). Before bead-based separation, each sample was 
assessed for malignant plasma cell levels using flow cytometry. Briefly, 
the CD138− cells were centrifuged at 400g for 5 min. The resulting cell 
pellet was resuspended in freezing medium consisting of 90% fetal calf 
serum and 10% DMSO at a concentration of 5–30 million cells per ml 
in multiple aliquots. Cell concentrations and aliquot locations were 
documented before storing in liquid nitrogen for future studies.

scRNA-seq sample preparation, library construction and 
sequencing
To generate high-quality and comparable single-cell data, we devel-
oped a highly detailed single-cell protocol on the basis of our pilot 
studies12,19,20 for implementation across centers and performed profil-
ing using single-cell 3’ profiling (10x Genomics). Briefly for scRNA-seq, 
aliquots of the CD138− BMME samples were thawed quickly in 37 °C 
water bath. Cells were washed with a warm medium and pelleted by 
spinning at 370g for 5 min at 4 °C. The cell pellet was resuspended 
in ice-cold PBS with 1% BSA and cell viability was measured. If cell 
viability was <90%, dead cell removal was performed using the dead 
cell removal kit (Miltenyi Biotec). The cell pellet was resuspended 
in 100 µl of dead cell removal microbead solution and incubated at 
room temperature for 15 min. Magnetic removal of labeled dead cells 
was performed using the MS column or autoMACS Pro separator. The 
eluted supernatant containing the live cells was pelleted by centrifuga-
tion at 370g for 5 min at 4 °C. Cells were finally resuspended in ice-cold 
PBS containing 1.0% BSA. To assess for potential batch effects between 
sequencing runs, a subset of samples were spiked in with approxi-
mately 100–150 cells from a murine sarcoma line (NIH/3t3; American 
Type Culture Collection (ATCC), CRL-1658), as described below. The 
cells were loaded onto the 10x Genomics Chromium Controller accord-
ing to the manufacturer’s instructions, followed by reverse transcrip-
tion (RT)–PCR, complementary DNA (cDNA) amplification and library 
preparation using the Chromium Next-GEM single-cell 3′ GEM, library 
and gel bead kit version 2.1. Briefly, approximately 8,000 cells were 
partitioned into nanoliter droplets to achieve single-cell resolution 
for a maximum of 5,000 individual cells per sample. The resulting 
cDNA was tagged with a common 16-nt cell barcode and 10-nt unique 
molecular identifier (UMI) during the RT reaction. Full-length cDNA 
from poly(A) mRNA transcripts was enzymatically fragmented and 
size-selected to optimize the cDNA amplicon size (~400 bp) for library 
construction as per recommendations from 10x Genomics. The con-
centration of the single-cell library was accurately determined through 
qPCR (Kapa Biosystems) to produce cluster counts appropriate for the 
paired-end sequencing using NovaSeq 6000 platforms (Illumina). The 
sequencing data were generated by targeting 25,000–50,000 reads 
per cell, which provided gene expression profiles of 1,000–4,000 
transcripts per cell.

NIH/3t3 spike-in and filtering for downstream analyses
In some samples, cells from murine sarcoma lines (NIH/3t3; ATCC 
CRL-1658) were spiked into the final human single-cell suspension to 
qualitatively assess batch effects across centers. The vial of NIH/3t3 
cells was thawed by gentle agitation in a 37 °C water bath. Contents of 
the vial were transferred to a 1.5-ml sterile tube and spun at approxi-
mately 400g for 4 min. The supernatant was discarded; the resulting 
pellet was washed with 1× PBS and then spun down at the same speed. 
After discarding PBS, the pellet was resuspended in complete medium, 
DMEM (ATCC, 30-2002) supplemented with 10% FBS and 1% penicil-
lin–streptomycin. Cell viability was assessed and kept on ice while the 
participant’s sample was prepared. After cells from the participant’s 
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BM aspirate were resuspended, approximately 100–150 NIH/3t3 cells 
were spiked in, targeting a 1:50 ratio of spike-in to human cells.

To identify the murine sarcoma spike-in cells in the scRNA-seq 
data, we additionally mapped the raw data to the 2020A combined 
human (GRCh38) and mouse (mm10) reference genome provided by 
10x Genomics using Cell Ranger (version 6.0.1; 10x Genomics) and 
analyzed the resulting data using Seurat. Clusters in which at least 80% 
of cells had fewer than 95% of reads mapped to the human reference 
genome were identified as mm10 spike-in cell lines. These populations 
were assessed to see whether variance in alignment between processing 
centers or between subsequent sequencing runs within the same center 
would result in sample-specific or processing-center-specific popula-
tions for the spike-in cell line to determine whether batch correction 
would be required. Cell barcodes corresponding to NIH/3t3 spike-in 
cells were removed from the final merged object after alignment to 
the 10x Genomics 2020A GRCh38 reference genome before calculat-
ing highly variable genes or clusters. Two samples with over 65% of 
cells being identified as NIH/3t3 spike-in cells were excluded from the 
integrated object and subsequent downstream analyses.

scRNA-seq genome alignment and quality control
For the analysis of scRNA-seq samples, Cell Ranger (version 6.0.1; 10x 
Genomics) was used for demultiplexing sequence data into FASTQ 
files, aligning reads to the human genome (GRCh38) and generating 
gene-by-cell UMI count matrices. Empty droplets were removed using 
DropletUtils55 (version 1.14.2) (false discovery rate (FDR) < 0.001). 
Ambient RNA was removed using CellBender56 (version 0.3.0) (false 
positive rate = 0.01). For quality control, cells with <1,000 UMI reads, 
<200 unique genes or >20% of UMIs mapped to mitochondrial genes 
were filtered out using Seurat (version 4.3). Harmony57 (version 0.1) 
was implemented to mitigate batch effects from processing sites and 
shipment batches in the resulting cell clusters and embeddings. For 
a small subset of downstream analyses that directly operate on the 
count matrix and do not support controlling for a batch covariate, such 
as CellChat58 or SCENIC59, a corrected count matrix was generated as 
described below.

Batch-corrected count matrices for GRN and cellular 
communication analysis
Batch effect estimation. First, the Poisson Pearson residuals were 
computed for each gene across all cells. Genes with zero UMI counts 
across all cells were excluded from further steps. For the remaining 
genes, the proportion of variance explained by batch in the Pearson 
residuals was estimated using the R2 from a linear regression model. 
Genes where the batch explained less than 1% of the variance were 
removed to avoid overcorrection.

Batch-corrected counts. The reference count distribution for each 
gene affected by batch was modeled as either Poisson (when the mean 
was equal to the variance) or negative binomial. The Poisson parameter 
was estimated using the maximum-likelihood estimator, while the neg-
ative binomial mean and dispersion parameters were estimated using 
a gamma Poisson generalized linear model. The batch correction was 
performed in two steps: (1) scaling and centering the Pearson residu-
als using the batch-level means and s.d. to account for the differences 
between batches and (2) transforming the standardized Pearson residu-
als onto the probability scale using the empirical distribution function 
and then the batch-corrected counts using the quantile function of the 
reference Poisson or negative binomial distribution. A pseudocount of 
1 and the original zeros observed in the uncorrected UMI counts were 
restored to preserve the observed sparsity.

Clustering and cell annotation
Following the removal of NIH/3t3 spike-in cells as described previ-
ously, raw counts were log-normalized (scale factor = 10,000) using 

Seurat60 (version 4.3). The first 25 principal components derived from 
principal component analysis were computed from the top 3,000 
variable genes to reduce data dimensionality. Harmony was applied 
to these principal components to generate batch-corrected embed-
dings, where each combination of processing center and shipment 
batch was considered an independent variable. To cluster cells of 
similar transcriptome profile, Louvain clustering was performed on the 
batch-corrected Harmony embeddings using Seurat’s ‘FindClusters’ 
function. Clusters were visualized using uniform manifold approxima-
tion and projection (UMAP). Clusters were aggregated into five major 
connected components called compartments based on their separa-
bility on the UMAP. To annotate these compartments, a combination 
of SingleR61 and cell-type-specific or subtype-specific marker expres-
sion was used. The identified compartments included ‘T/NK’ (T cells 
and NK cells), ‘B-Ery’ (B cells, CD34+ populations and erythroblasts), 
‘myeloid’ (monocytes, neutrophils and DCs), ‘plasma’ (plasma cells) 
and ‘Ery’ (erythrocytes). A small independent cluster of fibroblasts 
(946 cells, discovery cohort) was observed in the initial UMAP and was 
not included in any compartment.

More precise annotation of individual cell compartments was 
performed separately by repeating the above process on each compart-
ment, leveraging variable genes specific to each compartment. Because 
of the highly participant-specific nature of myeloma populations, batch 
correction in the plasma compartment was performed per aliquot 
instead of per batch. Each cluster was manually annotated on the basis 
of the expression of canonical markers or top genes of the clusters. 
While annotating cells, if a possible subset was identified within a given 
cluster on the basis of marker expression, further subclustering was 
performed specific to that cluster using the same procedure. Multiple 
resolutions were assessed, with the final subclustering used being the 
result that isolated the subpopulation of interest while minimizing the 
formation of minor or participant-specific clusters.

Validation cohort data processing and cell annotation label 
transfer
The validation cohort samples (n = 74) were processed and 
quality-controlled using the same procedures applied to the discovery 
cohort described above. The discovery and validation cohort samples 
were then merged into a single dataset using Seurat’s merge function 
for batch correction and annotation. Harmony was applied to cor-
rect batch effects while preserving shared biological variation. The 
resulting merged dataset was used for clustering and to derive UMAP 
embeddings. Subclusters in the validation cohort (n = 74) were inferred 
using the discovery cohort (n = 263) as the reference. Label transfer 
was performed using a k-nearest neighbor (kNN) approach (k = 1) on 
the basis of UMAP embeddings from the merged dataset (n = 337).  
For each cell in the validation cohort, the label of its single nearest 
neighbor in the discovery cohort was transferred. The FNN package62 
(version 1.1.4) was used to implement the kNN search.

Single-cell mutation mapping and copy-number variation 
inference
To better understand tumor heterogeneity and malignancy of plasma 
cell populations, we profiled mutations and copy-number changes 
of plasma cells. First, we used a mutation mapping strategy to detect 
mutations within each cell by looking for reads supporting the refer-
ence or variant alleles at variant sites in mapped reads from scRNA-seq 
BAM files. This was achieved by leveraging high-confidence somatic 
mutations derived from whole-exome sequencing data from the 
same participant. The code for mutation mapping is available from 
GitHub (https://github.com/ding-lab/10Xmapping). Furthermore, 
we used inferCNV (version 0.8.2; https://github.com/broadinstitute/
inferCNV) with default parameters to identify sample-level chromo-
somal copy-number variations of plasma cells, using the immune cells 
as reference normal set.
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Doublet detection
For the discovery cohort, doublets were identified by flagging clusters 
with high doublet proportions as predicted using DoubletFinder63, 
Scrublet64 (version 0.2.3) and Pegasus (version 1.8.1; https://github.
com/lilab-bcb/pegasus). Scrublet was used to detect doublets 
with the expected doublet rate set at 0.06 and thresholded at 0.2. 
Doublet-enriched clusters, characterized by at least two methods 
(FDR < 0.05, Fisher’s exact test), were manually reviewed and marked 
as doublets accordingly. Characteristics considered when reviewing 
doublet-enriched clusters include the simultaneous, high expression of 
canonical markers from unrelated lineages (for example, T cell markers 
CD3, CD8A and GZMK and myeloid markers LYZ, CST3 and CD14) or UMI 
counts disproportionately high relative to similar cell types. A total of 
17 cell clusters (n = 74,282) were flagged as doublets and were omitted 
from downstream differential expression, abundance and trajectory 
analysis. In the validation cohort, cells mapped to doublet populations 
were considered doublets and excluded from downstream analysis.

Differential expression among cell types and clinical groups
Differential expression analysis was performed using linear modeling 
(as implemented in limma65) R packages to identify markers enriched 
in each population, or between clinical groups of interest. Models 
were adjusted for technical covariates, such as processing site and 
batch. Significance was determined using moderated t-test statistics 
on the log-normalized expression. P values were adjusted for multiple 
comparisons using Benjamini–Hochberg (BH) correction.

Differential abundance of cell types and subtypes
Differential abundance was performed using limma by fitting a linear 
model to logit-transformed cell proportions across individual partici-
pant samples. The distribution of logit-transformed proportions was 
assumed to be normal but this was not formally tested. Proportions 
were computed as a fraction of a given set of cell types, as described 
by the relevant figures. Proportions of nonmalignant cells refer to cell 
populations other than plasma cells. Proportions of immune cells refer 
to nonerythroid and nonmalignant plasma populations. All models 
were adjusted according to the processing site. Significance was deter-
mined using a moderated t-test on the logit-transformed proportions. 
The coefficient of the model represents the log odds ratio between 
the two groups after adjusting for other confounding features. The 
logit-transformed proportions were computed using the car package66 
(version 3.1) with default parameters and the difference was considered 
statistically significant if P < 0.05.

Participant stratification based on time interval to disease 
progression
Participants in the CoMMpass study had regular 3-month checkins in 
which clinical parameters were evaluated following therapy. The day of 
disease progression was identified using standard IMWG criteria. Pro-
gression data used in this study were derived from the IA22 CoMMpass 
clinical metadata release. Participants were categorized into discrete 
progression groups on the basis of their PFS and the duration of time 
the participant was enrolled in the study. The extreme categories of RP 
and NP used cutoffs matching those of our pilot study12. RPs were those 
with a progression event within 18 months of therapy (PFS < 18 months). 
NPs included those who had no progression event for at least 4 years 
following therapy (PFS > 4 years). Ps were those who had a documented 
progression event between 18 months and 4 years (PFS > 18 months, 
PFS < 4 years). Incomplete (Inc) participants were those who exited 
the study before 4 years of disease diagnosis without experiencing a 
progression event.

Cytogenetic risk-based stratification of participant samples
The cytogenetic risk categorization was defined using translocation 
data or copy-number data derived from CD138+ WGS results included in 

the IA21 CoMMpass metadata release. Thresholds for calling mutation 
events in the MMRF CoMMpass data are based on the work by Skerget 
et al.11 HR participants were defined with one of the six following cytoge-
netic events: del17p13, t(14;16)[MAF], t(8;14)[MAFA], t(14;20)[MAFB], 
t(4;14)[WHSC1/MMSET/NSD2] and 1q gain. This extends the definition 
proposed by Skerget et al. by incorporating 1q gain. Participants with 
none of these six events were considered SR. Participants with partial 
mutation data, such as having only translocation or only copy-number 
data, could be classified as HR if an HR mutation was present in the 
available data; otherwise, these participants were excluded from down-
stream analyses involving risk-based stratification.

Additionally, we also used the revised HR definition proposed by 
the International Society of Myeloma (IMS) and IMWG for exploring 
immune associations. The revised IMS risk definition relies on the pres-
ence of one of the following cytogenetics abnormalities: (1) del(17p), 
with a cutoff of >20% clonal fraction, and/or TP53 mutation; (2) an 
IgH translocation including t(4;14), t(14;16) or t(14;20) along with +1q 
and/or del(1p); or (3) monoallelic del(1p32) along with +1q or biallelic 
del(1p32)25 (Supplementary Table 1).

Furthermore, we explored the association of APOBEC-induced 
mutational score with BM MM immune profile. The enrichment scores 
were computed using R package maftools67. Briefly, the enrichment 
scores are computed as a ratio between the number of C>T transitions 
occurring within a TCW motif over all the C>T transitions in a given 
sample and total background cytosines and TCW motifs within a 20-bp 
window of mutated bases.

Additionally, we obtained chromothripsis events for participants 
in this cohort from a prior study by Rustad et al.68

Prediction of participant progression based on immune cell 
abundances, cytogenetics and demographics
To assess the progression prediction capability of the immune signa-
tures alone and in combination with clinical variables, we developed 
and evaluated multiple classifiers. We evaluated the predictive power 
of clusters containing cells from at least 50% of samples, resulting in 
the usage of 83 subclusters. Subsequently, the cell frequencies of these 
subclusters were used to construct both univariate and multivariate 
models applying three distinct methods: Cox regression, logistic linear 
regression (LRM) and elastic net regression. Internal validation using 
bootstrap was used to test the robustness of the results.

For the elastic net regression models, a sensitivity analysis of the 
coefficients was performed to facilitate feature selection and the iden-
tification of pertinent features. Likewise, features were selected from 
LRM and Cox models using P-value filtering. Our modeling approach 
was designed to assess individual or multiple subclusters, integrated 
with additional variables such as age, sex, disease stage (ISS) and the 
cytogenetic risk descriptor mentioned earlier.

To ensure the robustness of our models, a bootstrap validation 
approach was implemented, yielding bias-corrected indices specific 
to each model type. Model performance metrics, including the Somers 
index (Dxy) and diagnostic statistics were computed using Harrel’s rms 
R package69. The R packages, glmnet70, survival71 and rms69 were used 
for identifying and testing predictions of disease progression. Visu-
alization was carried out using R packages such as ggplot, tidyverse, 
pheatmap, survminer and gtsummary.

Cell transition trajectory analysis
Pseudotemporal ordering of cells was performed using the Slingshot 
R package72. Cells with a known biological lineage were isolated from 
all other populations (for example, CD8+ T cells) and doublet and 
mitochondrial-enriched populations were excluded. New variable 
features and batch-corrected embedding components were com-
puted as described above. Slingshot was performed on the first 25 
batch-corrected harmony embeddings. If an identified progenitor or 
less-differentiated population was detected through annotation, this 
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cluster was designated as the ‘start cluster’ for trajectory analysis. Pseu-
dotimes for clusters, representing the distance along the trajectory 
from the starting cluster, were calculated using the Slingshot package.

Survival analysis
The participants were categorized on the basis of clinical character-
istics and risk groups. To analyze survival outcomes, we calculated 
the probabilities for either PFS or OS and generated Kaplan–Meier 
curves using the survival71 (version 3.2.7) and survminer73 (version 
0.4.9) packages in R. The PFS and OS data were derived from the IA22 
CoMMpass clinical metadata release. Participants who left the study 
before any follow-up appointments or participants with large delays 
in the start of therapy from the initial baseline visit were excluded from 
survival analysis. CoxPH models were used to determine the clinical 
characteristics that had the most significant and independent impact 
on participant survival. The survival curves based on the CD8 Teff HLA+ 
abundance were based on a CoxPH model regressing the OS on the Pear-
son residuals from a linear regression model with processing site as the 
covariate. The optimal cutoff to separate the participants at baseline 
in low-expression and high-expression groups was determined using 
maximally selected rank statistics implemented in the surv_cutpoint 
function from the survminer package73.

Pathway activity analysis and signature scoring
Gene set enrichment analysis (GSEA) was performed to identify the 
pathways enriched across cell types or clinical groups. The GSEA 
analysis function gsePathway from ReactomePA74 (version 1.42.0) 
was used to compute normalized enrichment scores (NESs) derived 
from an ordered gene list. Gene lists were ordered by log2 fold change 
computed using limma trend, correcting for processing site and batch 
among cell types or clinical groups, as described above. To evaluate 
the enrichment of a gene signature in individual cells, we computed a 
signature score using the AddModuleScore_UCell function from the 
UCell package75 (version 2.2.0). A list of genes from each biological 
signature was provided as an input. Higher scores were given to cells 
that consistently showed higher expression of genes in the marker list 
relative to a randomly selected set of background genes. To derive a 
per-participant signature score, the mean signature score of all cells 
in the relevant compartment was computed. Wherever necessary, the 
P values were adjusted using the BH approach.

Processing of bulk RNA-seq data to determine IFN signature 
scores
Bulk RNA-seq data were obtained from the IA22 release from the 
MMRF CoMMpass Study. The edgeR package76 (version 4.0.16) was 
used to normalize raw count data, filtering out genes with fewer 
than five counts per million (cpm) across all individual samples. 
The gene set variation analysis (GSVA) package (version 1.50.0) was 
used to compute per-sample signature scores for the IFN-I signature 
(Supplementary Table 4), using log cpm values as the input, and a 
Gaussian kernel density function. A Student’s t-test using the rstatix 
package77 (version 0.7.2) was used to determine whether the difference 
in IFN-I signature scores across participants with normal 1q21, 1q21 gain 
or 1q21 amplification or across participants with normal P53 activity, 
partial loss of P53 or complete loss of P53 was significant.

To determine whether IFN-I patterns identified in CD138+ bulk 
RNA-seq were consistent with those found in CD138− sequencing, 
IFN-I scores in residual plasma cells in the CD138− scRNA-seq data were 
compared to the CD138+ bulk RNA-seq data. Counts from baseline 
participants with at least 50 plasma cells captured in the scRNA data 
following quality control and doublet filtering were aggregated into 
pseudobulked count matrices using the pseudobulk expression func-
tion in Seurat version 4. Aggregated per-participant count matrices 
were subsequently filtered in an identical manner to the bulk RNA-seq 
data and GSVA IFN-I scores were computed.

Cell–cell communication analysis
CellChat58 (version 2.1.0) was used to identify possible cell–cell interac-
tions across the BMME. The normalized, batch-corrected count matrix 
described above was used as the input to CellChat. Doublet clusters 
were excluded from this analysis. For downstream analysis, some 
clusters representing biologically similar subtypes were aggregated. 
A table displaying the mapping between the original clusters and their 
CellChat clusters is provided in Supplementary Table 6.

GRN analysis
The GRNs for selected clusters within our dataset were estimated 
using pySCENIC, an implementation of SCENIC59 (single-cell regula-
tory network inference and clustering). The analysis was focused on 
selected clusters of interest from the myeloid compartment (CD14+ 
Mono_IFN, CD14+ Mono pro-inflam, Macro/Mono and GMP). The 
batch-corrected count matrix served as the input to run GRNBoost2 
and generate coexpression modules. GRNs were further inferred using 
the hg38_refseq-r80 (mc_v10_clust) motif database, hgnc motif anno-
tation (version 9) and pySCENIC’s default settings. Because of the 
stochastic nature of the GRNBoost2 algorithm, slightly varying regu-
lons are detected in each run. Hence, high-confidence regulons were 
filtered out if they were present in >80% of runs, while their target genes 
were considered if they were detected in >90% of runs. Using AUCell 
from pySCENIC, each cell was assigned a gene signature score (AUC) 
indicating the degree of TF activity. The AUC values were normalized 
across each regulon and their mean was calculated for each cluster to 
identify regulons that were strongly associated with a specific cluster. 
AUC values for each cell in the clusters of interest were averaged to get 
a per-participant per-regulon score. The cutpoint algorithm was used 
for grouping samples into ‘high’ and ‘low’ regulon activity categories. 
Survival analysis was performed using the Kaplan–Meier method and 
CoxPH regression model on the variables ‘high’ and ‘low’ activity. As 
AUC values were derived from batch-corrected count matrices, the 
shipment batch was not adjusted for in the Cox model.

Statistics and reproducibility
No statistical method was used to predetermine sample sizes. Sam-
ples from participants with a baseline time point who were treated 
with standard doublet or triplet therapy in the CoMMpass study were 
prioritized for scRNA-seq. Each analysis used all processed scRNA-seq 
samples available that met our quality control requirements, with the 
required clinical, cytogenetic or demographic information for each 
analysis. Two scRNA-seq samples were excluded from all analyses, in 
which >65% of cells from the sample were identified as mm10 spike-in 
cells. Samples were from an observational clinical trial and no rand-
omization was performed with regard to therapy. Therapy selection 
was determined by the physician. For creating scRNA-seq libraries, 
aliquots were randomly assigned to one of the four processing cent-
ers. Investigators were not blinded to allocation during experiments, 
as participant categorization for subsequent analyses was based on 
observed features and outcome assessments. Normality of data dis-
tribution was not formally tested, although variance stabilization 
transformations were applied where appropriate for the type of data, 
as described in the corresponding sections (logit transformation for 
proportion data in differential abundance and log normalization for 
expression data in differential expression).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All single-cell raw data, processed summary data and clinical infor-
mation used for this project are under controlled access at MMRF’s 
VLAB shared resource. MMRF requires anyone interested in accessing 
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the data apply for access at https://mmrfvirtuallab.org and to meet 
following minimum qualifications: (1) permanent employee of their 
institution and at a level equivalent to a tenure-track professor or  
(2) senior investigator that is overseeing laboratory or research pro-
gram. If the access request is approved, usually within 1 week, inves-
tigators will receive an email with instructions to download the data. 
Alternatively, a Seurat object with limited metadata is available from 
Zenodo (https://doi.org/10.5281/zenodo.11150168)78. Zenodo addition-
ally contains a copy of the Immune Atlas Cell Annotation Dictionary, 
which provides additional information about cluster annotation and 
marker expression for those who wish to use the preannotated dataset. 
For all other additional inquiries, please email ImmuneAtlasNetwork@
themmrf.org. The data from this study can be explored online at https://
myelomaimmuneatlas.themmrf.org/. Source data are provided with 
this paper.

Code availability
All the code used for data analysis and generation of figures is avail-
able on the MMRF Immune Atlas Consortium GitHub (https://github.
com/theMMRF/MMRF_ImmuneAtlas). A copy of the Immune Atlas Cell 
Annotation Dictionary providing additional information about cluster 
annotation and marker expression will also be provided on the GitHub 
for those who wish to use the preannotated dataset.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Overview of clinical characteristics of the validation 
cohort of 74 NDMM patients. (a) Summary of clinical characteristics. The forest 
plot illustrates the effect of various clinical features on progression-free survival 
(PFS). Error bars display a 95% confidence interval. (b) Bar chart showing the 
total number of patients with each of the six cytogenetic events used for risk 
stratification. (c) UpSet plot showing the distribution and overlap of the major 
cytogenetic abnormalities comprising the Davies-based high-risk myeloma 
definition between patients. (d) UpSet plot showing the intersection of patients 

categorized as standard-risk (SR) or high-risk (HR) and non-progressor (NP) 
or rapid progressor (RP). (e) Kaplan-Meier curves depict survival outcomes 
for patients categorized based on risk stratification (HR vs SR), transplant as a 
frontline treatment, treatment type, and ISS staging. Two-sided p-values from a 
log-rank test are displayed. Patients lacking ISS stage information at baseline or 
who lack WGS information for cytogenetic risk stratification were omitted from 
the survival analysis.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Evaluation of Batch Effects in the scRNA-seq data. UMAP 
projections and per-sample cluster compositions across immune and tumor 
cell compartments, illustrating the effects of batch correction using Harmony 
approach. Each panel (a-f) corresponds to distinct cellular compartments, 
including (a) all cells, (b) T and natural killer cells, (c) myeloid cells, (d) B cells, 
erythroblasts, and progenitors, (e) erythrocytes, and (f) plasma cells, further 
subdivided into 6 subpanels (x.1-x.6). In panel (a), each cluster is colored by their 
lineage group, with different shades distinguishing the clusters (see Fig. 2a-c). In 
panels (b-f), clusters are colored by their sub-compartment colors (see Fig. 2d-i, 
Extended Data 3). Subpanels (x.1-x.4) display UMAPs before (x.1-x.2) and after 
(x.3-x.4) Harmony batch correction, colored by cell type (x.1, x.3) with doublets 

marked in gray or by processing site (x.2, x.4) with individual sample aliquots 
distinguished by lighter or darker shades of the respective color (Emory: blue, 
Mayo: red, MSSM: green, WUSTL: purple). (x.5) Stacked bar charts highlighting 
the sample aliquots contributing to each (a.5) lineage group or (b.5-f.5) cluster, 
where the size of each segment is proportional to the number of cells coming 
from a given sample in the respective population and colored as described in 
panels x.2 and x.4. (x.6) Stacked bar charts displaying the cellular composition 
within individual aliquots, where the size of each segment is proportional to the 
cells associated with that cluster as a fraction of all cells in the corresponding 
compartment, colored by cluster as described in panels x.1 and x.3.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Extended Cell Type Annotation information. (a) Dot 
plot displaying additional markers for CD4+ T, CD8+ T, and natural killer cell 
annotations. Scaled expression values for each gene are visualized on a red-blue 
color scale, with the size of each dot representing the percent expression of the 
corresponding gene. The colored triangle next to each cell name corresponds 
to the T and NK cell clusters (see Fig. 2d). (b-c) UMAPs displaying subclusters of 
CD4+ T cells (b) and CD8+ T cells (c). (d-e) UMAP (d) and dot plot displaying the 
top differentially expressed markers (e) for mature erythrocyte populations. 
(f) Feature plot displaying plasma cell markers. UMAP embeddings correspond 
to those displayed in Fig. 2a. (g-h) UMAP (g) and dot plot displaying the top 
differentially expressed markers (h) for the plasma cell compartment.  
(i) Scatter plot showing the relationship between logit-transformed plasma cell 
proportions in CD138neg scRNA-seq data and plasma cell fractions estimated 
via flow cytometry on unsorted aspirates. Each dot represents an individual 
sample, colored by processing site. The black line with p and R2 values represents 
the line of best fit average across processing sites, where dashed color lines 

represent fits for individual processing sites. (j) Box plot depicting the plasma 
cell proportion in the scRNA-seq data for each patient (npatient=263). Patients 
are binned based on whether their plasma cell fraction is ≥20% (npatient=74) or 
<20% (npatient=189), as estimated by flow cytometry on unsorted samples. Two-
sided p-values comparing the groups is estimated via a linear model. In the box 
plots, bounds of the box represent the 25th and 75th percentile, with the center 
displaying the median. Whiskers extend to 1.5*IQR beyond the bounds of the 
box. (k-m) Analyses to assess for malignancy of the plasma cells in the CD138neg 
scRNA-seq data. (k) UMAP highlighting cells with driver overall and individual 
gene mutations in red and inferred copy number in purple. UMAP embeddings 
correspond to those displayed in Fig. 2a (l) UMAP of all cell types of RP (left) or NP 
(right) cohort samples showing various driver mutations. (m) CCND1 expression 
across cells in the RP vs NP patient cohorts (top). CCND1 expression in cells from 
patients with mutations (mut) and/or translocations (Tx) determined based on 
analysis of WES and WGS data (bottom). Unadjusted p-values from a wilcoxon 
rank-sum test between RP and NP samples is displayed if significant.
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Extended Data Fig. 4 | See next page for caption.

http://www.nature.com/natcancer


Nature Cancer

Resource https://doi.org/10.1038/s43018-025-01072-4

Extended Data Fig. 4 | Summary of Cytogenetic Risk Associated Immune 
Alterations in Multiple Myeloma. (a) Survival based on CD8 Teff HLA+ cell 
abundance as a fraction of CD8+ T cells (p = 0.036, log-rank test). Cell abundances 
were batch-corrected using regression residuals. Cut-off was determined by 
maximally selected rank statistics at the 82% quantile (191 low, 39 high).  
(b) Progression-free survival analysis from regression of the above described 
CD8 Teff HLA+ metrics (p = 0.062, log-rank test) with cutoff set at the 89% quantile 
(205 low, 25 high). (c-d) Scaled expression of ‘dysfunctional’ T cell signature 
genes, including exhaustion and senescence markers (Supplementary Table 4).  
Dot plot (c) showing percent of cells expressing each gene with dot size and 
average expression with color (red = high, blue = low) and tile plot (d) showing 
average expression across cluster. Rows are clusters, and columns are genes, 
grouped by signature category. (e-f) Trajectory plots depict the predicted 
differentiation of CD8+ T cell subtypes from CD8+ naïve T cells. Arrows indicate 
directionality and dots represent trajectory clusters colored by batch-adjusted 
log-odds abundance and sized by cell count. Comparisons shown for patients 
with both t(4;14)[NSD2] and 1q21 gain (e) and TP53 complete loss (f) compared 
to those without them (orange = high, blue = low). (g) Per patient heatmap of 
overall IFN-I response signature scores. Red corresponds to high signature score, 
blue corresponds to a lower signature score. Signature scores are normalized 
within each cell lineage. Patients with no cells of a specific type will have a grey 

bar for their IFN-I signature score. Patient tumor cytogenetics are displayed 
in a title map to the left of the signature score plot. (h) Dot plots of differential 
cellular abundance analysis for patients with 1q21 gain in combination with 
other high-risk abnormalities. Each row corresponds to a comparison between 
1q21 and other cytogenetic events. “HR_No1q” = high risk without 1q21 gain; 
“HR+1q21” = high risk with 1q21 gain. Colors indicate log-odds ratios, and shapes 
indicate two-sided p-values comparing cluster proportions from a linear model 
(circle = ns, diamond = p < 0.05, square = p < 0.01). (i) Dot plot of differential 
cellular abundance analysis for patients with partial or complete loss of TP53 via 
mutation or copy number loss. Partial loss is defined as either monoallelic loss of 
17p13 or one non-synonymous mutation of TP53. Complete loss is defined  
as biallelic loss of 17p13 or monoallelic loss of 17p13 with mutation.  
(j) Dot plot summarizing differential cellular abundance analysis for patients 
with Chromothripsis or APOBEC events. (k-m) Box plots illustrating the 
relationship between bone marrow plasma percentages (>=20%, npatient = 74; 
<20%, npatient = 189), as estimated via flow cytometry before CD138 isolation 
(x-axis), and the abundance of CD8+ T effector memory cells (npatient=263)  
(k), BM-resident NK cells (l), and fibroblasts (m). Two-sided p-values for each 
comparison were computed using a linear model. In the box plots, bounds of the 
box represent the 25th and 75th percentile, with the center displaying the median. 
Whiskers extend to 1.5*IQR beyond the bounds of the box.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Differential abundance analyses for immune 
subpopulations comparing rapid progressors versus non-progressors. (a-d) 
Summary differential abundance volcano plots and individual cluster box plots, 
computed as either a fraction of (a) all immune cells, (b) B cells, (c) myeloid cells, 
or (d) CD3+ cells, comparing RP and NP patients. Each panel consists of a volcano 
plot in the top left, displaying the log-odds ratio (x-axis) derived from a site-
adjusted linear model associating progression group with logit-transformed cell 
proportions, and the y-axis displays the -log10 of the two-sided p-value from the 
linear model. Points are colored according to cluster identity in Fig. 2.  
Box plots depict the per-patient proportion for each cluster within each 

compartment, with individual patients shown as open circles (Rapid Progressors 
(RP, npatient = 67)=Orange, Non-Progressors (NP, npatient = 83)= Blue). Two-sided 
p-values are displayed above the box plot if the populations are significantly 
different between RP and NP (p < 0.05) as assessed using a linear model. In the 
box plots, bounds of the box represent the 25th and 75th percentile, with the center 
displaying the median. Whiskers extend to 1.5*IQR beyond the bounds of the 
box. (e) Comparison of differential abundance profiles between triplet therapy 
patients and the overall cohort. The x and y axes display log-odds ratio change 
in proportion between RP (positive) and NP (negative) patients across triplet 
therapy patients (x-axis) or all patients (y-axis) as a fraction of immune cells.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Selected gene regulators and their survival associations 
in myeloid populations. Kaplan-Meier curves (top) and feature plots displaying 
the per-cell AUC scores (bottom) in selected myeloid populations for STAT1 (a), 
BRCA1 (b), E2F1 (c), E2F8 (d), IRF1 (e), IRF2 (f), IRF7 (g), IRF9 (h), and KLF9 (i) 
regulons. Gene regulator analysis and regulon identification were performed 

using pySCENIC on selected myeloid clusters. Kaplan-Meier curves are based on 
the average AUC value across the selected myeloid populations. The cut-point 
approach was implemented to stratify patients into either high or low regulon 
expression groups. Two-sided p-values indicate the significance of a CoxPH 
model fitted to the regulon AUC score.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | UMAP and dot plot comparisons of validation and 
discovery cohorts across cell compartments. UMAP projections and stacked 
bar charts comparing cellular composition between discovery and validation 
cohorts across major immune cell compartments. Each panel (a-d) corresponds 
to a distinct cellular compartment including (a) all cells, (b) NK/T cells, (c) 
myeloid cells and (d) B cells, erythroblasts and progenitor cells, further 
subdivided into 5 subpanels (x.1-x.5). Subpanels (x.1-x.2) display UMAPS of 
both discovery and validation cells colored by cell type (x.1) or sample (x.2). 

Subpanels (x.3-x.4) show the same UMAPS separated by discovery (x.3) and 
validation (x.4) cohorts, colored by cell type. Subpanels (x.5) contain stacked bar 
charts representing the distribution of cells within each cluster across individual 
samples and separated by cohort. Samples from the discovery cohort are colored 
different shades of blue, while samples from the validation cohort are colored 
different shades of red. (e-i) Validation cohort dot plot showing the previously 
described cluster markers for (e) CD8+ cells, (f) CD4+ cells, (g) natural killer cells, 
(h) myeloid cells, and (i) B cells, erythroblasts, and progenitor cells.
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Extended Data Fig. 8 | Additional Model Diagnostics and Predictive Modeling 
of Overall Survival and Progression in MM Using Immune Signatures, 
Cytogenetics, and Clinical Features. Panels (a-c) show model AUCs in the 
discovery cohort across immune compartments: (a) AUCs by immune cell 
compartments and variable combinations, (b) Boxplots showing the distribution 
of AUCs for models integrating a single cell type with various covariates, along 
with the AUC for the top models integrating all clinical covariates and either 7, 
11, 34, or all immune populations, and (c) Boxplots showing the AUCs for models 
derived from individual immune populations, grouped by cellular compartment. 
In the box plots, bounds of the box represent the 25th and 75th percentile, with the 
center displaying the median. Whiskers extend to 1.5*IQR beyond the bounds of 
the box. Whiskers extend to 1.5*IQR beyond the bounds of the box. (d-i) Receiver 
operating characteristic (ROC) and Kaplan-Meier (KM) analysis for overall 
survival (OS) prediction in the discovery cohort. (d) ROC curves for models with 
single immune subclusters (SubC), clinical covariates (CoV), cytogenetics, and 
combinations. Covariates include age, batch, site, ISS stage and cytogenetics. 
KM curves depict predicted OS based on (e) clinical covariates (f) cytogenetics + 
clinical covariates, (g) Immune Atlas Signature + clinical covariates, and (h) the 
top 20 predictive immune subclusters + clinical covariates. (i) The importance 
of immune subclusters for predicting the OS colored by favorable (blue) or 

poor (red) OS association. (j-o) ASCT’s contribution to survival prediction in 
discovery and validation cohorts. KM curves showing ASCT association with 
OS in discovery (j) and validation (k) cohorts. Predictive models including 
ASCT, cytogenetics, clinical variables, and top immune features in discovery 
(l) and validation (m). Equivalent models excluding ASCT as a variable, still 
stratifying high- versus low-risk patients in discovery (n) and validation (o) 
cohorts. (p-t) OS prediction in the validation cohort. (p) A forest plot based on 
a multivariate CoxPH illustrating the bias of ASCT and ISS for OS. Two-sided 
p-values from the CoxPH model are displayed. (q) Box plot of bootstrapped 
AUCs for models using various immune compartments (npatient=71), with the 
integrative model as a superior option. However, the AUC for OS remained below 
0.75 in general. (r) Box plot of bootstrapping applied to an integrative model of 
feature selection based on AUC to identify the optimal model for OS prediction 
using immune populations, clinical information, cytogenetics, and ASCT. In 
the box plots, bounds of the box represent the 25th and 75th percentile, with the 
center displaying the median. Whiskers extend to 1.5*IQR beyond the bounds 
of the box. (s) KM curves show the effect of ASCT on the prediction of OS. (t) 
Integrative model using the top 20 immune signatures combined with clinical 
and cytogenetic information in the prediction of OS.
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Extended Data Fig. 9 | See next page for caption.

http://www.nature.com/natcancer


Nature Cancer

Resource https://doi.org/10.1038/s43018-025-01072-4

Extended Data Fig. 9 | Prediction of MM progression by integration of IMWG 
cytogenetics risk along with immune signatures. (a) Diagram illustrating the 
type of variables that were tested (immune signatures, IMWG cytogenetics, 
and clinical covariates) followed by the three regression strategies used (elastic 
net, logistic regression, and Cox) with bootstrap validation for model selection. 
(b) Receiver operating characteristic (ROC) curves for progression prediction 
models based on single clusters, clinical variables, and cytogenetics or immune 
atlas variables alone and in combination are shown and colored based on the 
specific group of models. The labels include subclusters (SubC) and covariates 
(CoV), which include age, batch, site, ISS, and cytogenetics. Kaplan-Meier curves 
showing the separation of patients with high or low scores for prediction of PFS 
are shown for (c) demographics-based, (d) IMWG 2024 high-risk criteria, and (e) 
Immune Atlas signatures. Kaplan-Meier curves show the separation of patients 

when cytogenetic risk scores are combined with the (f) best 10 predictive 
immune atlas subclusters or (g) 57 subclusters. (h) Volcano plot displaying 
the importance of immune subclusters for predicting the progression based 
on the coefficients from the modeling. The clusters with better and poor MM 
outcomes are shown with blue and red colors, respectively. Receiver operating 
characteristic (ROC) curves for using 10 subclusters and excluding ASCT for 
discovery (i) and validation (j) cohorts. (k) Dot plot showing the average scaled 
expression of marker genes for the “MatNeut2” phenotype reported in  
Jong et al., 2024. Expression is visualized on a red-blue color scale, with the size of 
each dot corresponding to the percent expression of marker genes. Expression is 
normalized relative to the average cluster expression across all CD14+ monocyte 
clusters.
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