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Gemcitabine and cisplatin plus nivolumab as 
organ-sparing treatment for muscle-invasive 
bladder cancer: a phase 2 trial

Cystectomy is a standard treatment for muscle-invasive bladder cancer 
(MIBC), but it is life-altering. We initiated a phase 2 study in which patients 
with MIBC received four cycles of gemcitabine, cisplatin, plus nivolumab 
followed by clinical restaging. Patients achieving a clinical complete 
response (cCR) could proceed without cystectomy. The co-primary 
objectives were to assess the cCR rate and the positive predictive value of 
cCR for a composite outcome: 2-year metastasis-free survival in patients 
forgoing immediate cystectomy or <ypT1N0 in patients electing immediate 
cystectomy. Seventy-six patients were enrolled; of these, 33 achieved a cCR 
(43%, 95% confidence interval (CI): 32%, 55%), and 32 of 33 who achieved a 
cCR opted to forgo immediate cystectomy. The positive predictive value of 
cCR was 0.97 (95% CI: 0.91, 1), meeting the co-primary objective. The most 
common adverse events were fatigue, anemia, neutropenia and nausea. 
Somatic alterations in pre-specified genes (ATM, RB1, FANCC and ERCC2) or 
increased tumor mutational burden did not improve the positive predictive 
value of cCR. Exploratory analyses of peripheral blood mass cytometry and 
soluble protein analytes demonstrated an association between the baseline 
and on-treatment immune contexture with clinical outcomes. Stringently 
defined cCR after gemcitabine, cisplatin, plus nivolumab facilitated 
bladder sparing and warrants further study. ClinicalTrials.gov identifier: 
NCT03451331.

Radical cystectomy is a standard treatment for muscle-invasive blad-
der cancer (MIBC). However, radical cystectomy is a life-changing 
operation due to the need for urinary diversion and is associ-
ated with a 90-d mortality risk of up to 6–8% (ref. 1). Neoadjuvant 
cisplatin-based chemotherapy before radical cystectomy confers 
improved survival in patients with MIBC2,3. Although the intent of 
neoadjuvant chemotherapy is eradication of micrometastatic dis-
ease, neoadjuvant cisplatin-based chemotherapy after transurethral 
resection of bladder tumor (TURBT) yields a pathological complete 
response (pCR) at the time of cystectomy in approximately 30% of 

patients2,4. Paradoxically, a pCR can be determined only after the 
bladder has been surgically removed.

Given the potential to achieve a pCR with TURBT followed by 
neoadjuvant chemotherapy, the need for cystectomy to achieve  
cure in all patients has been questioned. Early single-center retro-
spective studies reported that long-term bladder-intact disease- 
free survival is achievable in a select subset of patients with MIBC 
treated with TURBT plus systemic therapy, and contemporary retro-
spective series have substantiated such results5–7. However, challenges 
to the broader application of this treatment paradigm have included 
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restaging due to the development of metastatic disease, and three 
patients developed adverse events (cerebrovascular accident, deep 
venous thrombosis and increase in creatinine) and proceeded with 
cystectomy.

Coprimary endpoint analysis
The co-primary endpoint of cCR was achieved in 33 of 76 patients (43%, 
95% confidence interval (CI): 32%, 55%; Fig. 1a). Lower baseline clinical 
T stage was associated with a higher likelihood of a cCR, although cCRs 
were observed in patients with cT2–T4 disease (Extended Data Table 1). 
Among the 33 patients achieving a cCR, only one opted for immediate 
cystectomy with surgical pathology, revealing a low-grade ypTaN0 
urothelial cancer (UC). As shown in Fig. 1b, the positive predictive value 
of cCR (co-primary endpoint) for the composite outcome measure was 
0.97 (95% CI: 0.91, 1), with the lower bound of the 95% CI exceeding the 
pre-specified threshold of 80%.

The median metastasis-free and overall survival for the entire 
study cohort was not reached at the time of the data lock (second-
ary endpoints). To further contextualize the prognostic impact of 
achieving a cCR as related to metastasis-free survival and overall sur-
vival, a post hoc landmark analysis was performed using the time of 
clinical restaging as ‘time 0’. On landmark analysis from the time of 
restaging, patients achieving a cCR experienced significantly longer 
metastasis-free survival and overall survival compared to patients not 
achieving a cCR (Fig. 1c,d).

Clinical outcomes according to cCR status
The median follow-up for patients achieving a cCR was 30 months 
(range, 18–42 months) at the data lock and the clinical outcomes of 
this group are detailed in Fig. 2. Thirty-two patients opting to forgo 
immediate cystectomy received a median of eight (range, 0–8) cycles 
of maintenance nivolumab, and eight of 32 patients later underwent 
cystectomy for local recurrence (including one patient for an abnor-
mal MRI scan with no cancer detected on TURBT or cystectomy). The 
clinical stage at the time of recurrence and the pathological stage at 
cystectomy are summarized in Supplementary Table 1; seven of eight 
patients had ≤ypT2N0 disease on cystectomy. Two additional patients 
developed non-invasive local recurrence during follow-up (low-grade 
cTa and cTis) and were managed with TURBT and intravesical BCG, 
respectively, without evidence of subsequent recurrence. Two of the 
32 patients developed metastatic disease, including one patient with 

(1) a paucity of prospective studies8,9; (2) a lack of rigorous and stand-
ardized approaches to both measure (that is, clinical restaging) and 
define clinical complete response (cCR); (3) poor understanding of 
the impact of later cystectomy on cancer control in patients with a cCR 
who develop local recurrence after a period of initial surveillance; and 
(4) suboptimal systemic therapeutic regimens.

Single-agent PD-1/PD-L1 immune checkpoint blockade followed 
by cystectomy for the treatment of MIBC has been shown to yield a 
pCR in 30–40% of patients10,11. Cisplatin may induce favorable immu-
nomodulatory effects12, providing rationale for regimens combining 
neoadjuvant chemotherapy plus PD-1/PD-L1 blockade. In phase 2 stud-
ies, neoadjuvant gemcitabine, cisplatin, plus PD-1/PD-L1 blockade has 
demonstrated pCR rates of 40–50%, leading to the initiation of several 
phase 3 trials (NCT03661320, NCT03732677 and NCT03924856)13,14.

The integration of molecular biomarkers may further improve 
selection of patients with MIBC who could be treated definitively with 
TURBT plus systemic therapy. Somatic alterations in genes encoding 
proteins involved in DNA damage repair (DDR) in pre-treatment TURBT 
tissue have been correlated with a higher pCR rate with cisplatin-based 
neoadjuvant chemotherapy15–20. DDR gene alterations have also been 
associated with an increased likelihood of response to PD-1/PD-L1 
blockade, potentially mediated by increased tumor mutational burden 
(TMB), raising the hypothesis that such tumors may be particularly sen-
sitive to cisplatin plus PD-1/PD-L1 blockade combination regimens21,22.

To further evaluate the role of TURBT plus systemic therapy as 
definitive treatment for MIBC, we designed a phase 2 trial integrat-
ing (1) cisplatin-based chemotherapy plus PD-1 blockade; (2) stand-
ardized clinical restaging; and (3) translational analyses seeking to 
explore genomic, radiologic and immunologic biomarkers to refine 
future patient selection for this approach. Our primary goal was to 
test whether uniformly assessed and consistently defined cCR could 
identify patients who could safely forgo immediate cystectomy. We 
reasoned that a potentially effective personalized risk-adapted strategy 
would (1) tolerate missing some patients who might have been suitable 
candidates to forgo immediate cystectomy in favor of maximizing 
identification of patients who fare well without immediate cystectomy 
and (2) incorporate the ability of later cystectomy to achieve favora-
ble cancer-related outcomes in the subset of patients with a cCR who 
experience local recurrence after initial surveillance. Therefore, our 
primary objectives were to estimate the cCR rate and to assess the posi-
tive predictive value of cCR for a composite outcome measure (2-year 
metastasis-free survival in patients forgoing immediate cystectomy 
or <ypT1N0 in patients electing immediate cystectomy; Extended 
Data Fig. 1).

Results
Patient characteristics and treatment
Cisplatin-eligible patients with cT2–T4aN0M0 MIBC received treatment 
with four cycles of gemcitabine and cisplatin plus nivolumab (Extended 
Data Fig. 1) followed by clinical restaging. Clinical restaging comprised 
magnetic resonance imaging (MRI) of the abdomen and pelvis (unless 
contraindicated, in which case computed tomography (CT) scans were 
substituted), CT of the chest, cystoscopy with biopsies according to 
a recommended template (Methods) and urine cytology. A cCR was 
defined as (1) no evidence of high-grade malignancy on biopsy; (2) no 
malignant cells on urine cytology; and (3) no definitive evidence of local 
or metastatic disease on cross-sectional imaging. Patients achieving a 
cCR were offered the option to proceed with cystectomy versus retain 
their bladder and receive eight additional doses of nivolumab (admin-
istered every 2 weeks) followed by surveillance. Patients not achieving 
a cCR were recommended to proceed with cystectomy.

Between 8 August 2018 and 24 November 2020, 76 patients were 
enrolled with baseline characteristics as detailed in Table 1. The disposi-
tion of patients on study is outlined in Fig. 1a. Among the 76 patients 
enrolled, 72 underwent clinical restaging: one patient did not undergo 

Table 1 | Baseline patient characteristics (n = 76)

Characteristic Category n % or range

Sex Female 16 21%

Male 60 79%

Race Caucasian 58 76%

African American 1 1%

Asian 9 12%

Unknown 8 11%

Age (years) Median 69 39–85

Clinical stage cT2N0M0 43 57%

cT3N0M0 24 32%

cT4N0M0 9 12%

Histology UC 57 75%

UC with squamous 7 9%

UC with glandular 2 3%

UC with micropapillary 6 8%

UC with other variant 4 5%
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metastatic disease diagnosed 10 months after a cystectomy revealed 
ypT4N1 disease and the other presenting with malignant ascites with 
no evidence of recurrence in the bladder.

Thirty-nine patients did not achieve a cCR, and 34 of 39 underwent 
cystectomy (four received off protocol radiation and one declined any 
local therapy). The relationship between clinical restaging results in 
patients not achieving a cCR and the final cystectomy pathological 
stage is summarized in Supplementary Table 2.

Safety
The treatment-emergent adverse events are detailed in Extended Data 
Table 2 and Supplementary Table 4. Grade ≥3 treatment-emergent 
adverse events occurred in 75% of patients. The most common all-grade 
treatment-emergent adverse events were fatigue, anemia, neutrope-
nia and nausea, and the most common grade ≥3 treatment-emergent 
adverse events were anemia, neutropenia and urinary tract infections. 
One patient died due to sepsis subsequent to a bowel perforation 
occurring at the time of cystectomy, which was not attributed to  
systemic therapy.

Genomic features associated with clinical outcomes
In an effort to refine future selection of patients for this risk-adapted 
treatment approach, a secondary objective of the study was to assess 
whether the presence of a set of genomic alterations in baseline TURBT 
tissue would enhance the positive predictive value of cCR. Tumor-only 
targeted DNA sequencing of pre-treatment TURBT tissue was available 
from 73 of 76 patients (Fig. 3). A panel of genes that, when mutated, had 
previously been correlated with response to cisplatin-based chemo-
therapy or PD-1/PD-L1 blockade (ERCC2, RB1, ATM and FANCC)15–22, as well 
as increased TMB (using an established cutpoint of ≥10 mutations per 
megabase (mut/Mb), which has served as the basis for tumor-agnostic 
PD-1 blockade regulatory approvals and for which sensitivity and speci-
ficity in bladder cancer has been established23,24), was pre-specified for 
analysis. Similar to the co-primary objective, the intent of this second-
ary objective was to assess the positive predictive value of the genomic 
alterations, added to cCR, for the composite outcome measure of 2-year 
metastasis-free survival in patients forgoing immediate cystectomy 
or <ypT1N0 in patients undergoing immediate cystectomy. However, 
the high positive predictive value of cCR alone precluded this analysis, 
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Fig. 1 | Study design and primary objectives of HCRN GU16-257. a, CONSORT 
diagram outlining disposition of patients enrolled on HCRN GU16-257 and 
demonstrating co-primary objective of estimating the cCR rate. b, Contingency 
table informing co-primary objective of assessing the positive predictive value 
of cCR for the composite outcome measure of 2-year metastasis-free survival 
in patients forgoing immediate cystectomy or <ypT1N0 in patients undergoing 
immediate cystectomy (n = 69 of 76 total patients). Seven patients were excluded 
for the following reasons: four patients who did not undergo clinical response 
assessment; two patients who did not achieve a cCR, who did not pursue 
cystectomy and who were lost to follow-up before 2 years; and one patient who 
achieved a cCR and without evidence of local or distant recurrence at 18 months 

and who was subsequently lost to follow-up. c, Metastasis-free survival according 
to cCR versus no cCR using landmark timepoint of post-cycle 4 restaging (n = 72; 
four patients were excluded who did not undergo clinical response assessment). 
Estimating metastasis-free survival was a secondary objective of the study.  
d, Overall survival according to cCR versus no cCR using landmark timepoint of 
post-cycle 4 restaging (n = 72; four patients were excluded who did not undergo 
clinical response assessment). Estimating overall survival was a secondary 
objective of the study. a and b were created with BioRender. *Composite 
outcome measure: 2-year metastasis-free survival in patients forgoing immediate 
cystectomy or <ypT1N0 in patients undergoing immediate cystectomy.
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and, instead, the positive predictive value of cCR with or without the 
pre-specified genomic alterations for the composite outcome of 2-year 
bladder-intact survival in patients forgoing immediate cystectomy or 
≤ypT1N0 in patients undergoing immediate cystectomy was explored. 
As shown in Table 2 (and associated contingency table, Supplementary 
Table 4), the positive predictive value of the pre-specified genomic 
alterations added to cCR status did not clearly enhance the positive 
predictive value of cCR alone. The possible exception was the presence 
of a pathogenic mutation in FANCC, ATM and/or RB1 in patients with 
a cCR, which was limited to five patients, all of whom had pathogenic 
RB1 mutations; the relevance of this finding is unclear.

An exploratory analysis was also performed to assess the associa-
tion between the pre-specified genomic alterations and achieving a 
cCR. cCR rates were higher in patients with tumors harboring ERCC2 
mutations or TMB ≥10 mut/Mb versus patients with tumors without 
such alterations, but these associations did not achieve statistical sig-
nificance after correction for false discovery (Extended Data Table 3).

Radiographic features associated with clinical outcomes
Conventional radiographic assessments are largely qualitative, and 
bladder tumors are particularly difficult to assess given the anatomy 
of the bladder and challenges distinguishing post-treatment bladder 
wall thickening from residual tumor25. Post-cycle-4 restaging MRI scans 
were recommended per protocol (unless otherwise contraindicated 
or not feasible, in which case CT scans were substituted) and were 
obtained in 50 of 76 patients. An exploratory analysis was performed 
involving central review of the MRI images with assignment of Vesical 
Imaging-Reporting and Data System (VI-RADS) scores25 (Extended Data 
Fig. 2a,b) by two independent reviewers blinded to clinical outcomes 
(weighted kappa: 0.63; 95% CI: 0.44, 0.82). The distribution of VI-RADS 
scores at the time of restaging, according to cCR status, is shown in 
Extended Data Fig. 2c. Only two patients who achieved a cCR had a 

restaging VI-RADS score greater than 2, although both experienced a 
subsequent local recurrence. Although VI-RADS scores of 1–2 versus 3–5 
were enriched in patients achieving a cCR, 44% of patients not achieving 
a cCR had restaging VI-RADS scores of 1–2 (Extended Data Fig. 2c). On 
landmark analysis from the time of restaging, restaging VI-RADS score 
of ≤2 versus >2 was associated with significantly longer metastasis-free 
survival (P = 0.0002 from log-rank test; Extended Data Fig. 2d).

Immunological features associated with clinical outcomes
To determine whether baseline and/or on-treatment immune param-
eters were associated with achieving a cCR or with metastasis-free sur-
vival or overall survival, additional exploratory analyses were pursued. 
PD-L1 immunohistochemical staining (22C3 antibody clone) of baseline 
TURBT specimens was completed in a central laboratory. A higher 
PD-L1 combined positive score was associated with a higher cCR rate, 
although the relationship between higher PD-L1 expression and longer 
metastasis-free survival or overall survival did not achieve statistical 
significance (Extended Data Fig. 3a–c). Mass cytometry (CyTOF) was 
performed on peripheral blood mononuclear cells (PBMCs) to define 
frequency of immune subsets, and a panel of 92 soluble protein analytes 
was measured in the plasma (Olink) on cycle 1, day 1 and cycle 3, day 1 
(Fig. 4a). Protein analytes were also measured in the urine at the time 
of post-cycle-4 clinical restaging. Although the abundance of specific 
immune cell populations on cycle 1, day 1 and cycle 3, day 1 correlated 
with achieving a cCR versus not, such findings did not achieve statistical 
significance after correction for false discovery (Extended Data Fig. 4a).  
A higher abundance of cycle 1, day 1 naive CD4+ T cells in peripheral 
blood was associated with significantly longer metastasis-free survival 
and overall survival (Fig. 4b,c and Extended Data Fig. 4b). On landmark 
analysis, a higher abundance of circulating naive CD8 T cells on cycle 3, 
day 1 was associated with significantly longer metastasis-free survival 
and overall survival (Fig. 4d,e and Extended Data Fig. 4c).
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Fig. 2 | Clinical outcomes of patients enrolled on HCRN GU16-257 achieving a cCR. * Patient underwent cystectomy for radiographic changes concerning for local 
recurrence without evidence of cancer on biopsy or final cystectomy specimen. † Patient opted for immediate cystectomy.
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Several plasma protein analytes significantly increased on treat-
ment from cycle 1, day 1 to cycle 3, day 1 (Extended Data Fig. 5a). Cycle 1,  
day 1 levels of plasma analytes were not significantly associated with 
cCR after correction for false discovery (Fig. 4f). However, cycle 3, day 
1 plasma levels of TNF-related apoptosis-inducing ligand (TRAIL), FasL 
and CD244 were significantly higher in patients achieving a cCR versus 
not (Fig. 4g,h). Higher cycle 1, day 1 plasma levels of several analytes 
were associated with significantly shorter metastasis-free and overall 
survival, including IL6 and angiopoietin-2 (ANGPT2) (Fig. 4i,j and 
Extended Data Fig. 5b,c). On landmark analysis at cycle 3, day 1, similar 
associations with metastasis-free survival and overall survival were 
observed for several plasma analytes, such as IL6 and ANGPT2, based 
on either cycle 3, day 1 levels or on-treatment changes in levels from 
cycle 1, day 1 to cycle 3, day 1 (Fig. 4k,l and Extended Data Fig. 5d–h). No 
urine analytes from samples obtained at the time of clinical restaging 
were significantly associated with achieving a cCR after correction 
for false discovery (Extended Data Fig. 6a), whereas increased urine 
levels of analytes, such as epidermal growth factor (EGF), at the clinical 
restaging timepoint were associated with both significantly inferior 
metastasis-free survival and overall survival (Fig. 4m and Extended 
Data Fig. 6b).

Discussion
To our knowledge, this is among the first prospective trials to test TURBT 
plus cisplatin-based chemotherapy as definitive bladder-sparing treat-
ment for MIBC; the first to define the performance characteristics of 
uniformly assessed and defined cCR as a tool for patient selection for 
this strategy; and the first to integrate immune checkpoint blockade 
into this approach. Our study demonstrates that stringently defined 
cCR is associated with favorable survival outcomes and that prolonged 

bladder-intact survival is achievable in a large subset of patients with 
MIBC and a cCR to TURBT and gemcitabine, cisplatin, plus nivolumab.

Radical cystectomy or radiation therapy are mainstays of local 
treatment for MIBC. However, despite such treatments, more than 50% 
of patients experience metastatic recurrence2,26. Radical cystectomy 
requires urinary diversion and is associated with a non-negligible risk 
of morbidity and mortality1. Concurrent chemoradiation is associated 
with an apprioximately 17% risk of late grade ≥2 pelvic toxicity, and 
approximately one-third of patients report worsening quality of life 
6 months after completing treatment and persisting on long-term 
follow-up27,28. Furthermore, salvage cystectomy due to local recur-
rence is required in 12–19% of patients treated with radiation with or 
without concurrent chemotherapy29. Systemic therapy is associated 
with a different constellation of potential adverse events, and gemcit-
abine, cisplatin, plus PD-1 blockade demonstrated a toxicity profile 
consistent with other studies13,14. Each of these treatment modalities 
is an important component of optimal treatment of MIBC, and each is 
associated with specific tradeoffs. Risk-adapted MIBC treatment para-
digms that balance both efficacy and survivorship while also reducing 
treatment-related burden could represent an important addition to 
patient-centered care.

Although the IMvigor 130 and Keynote 361 studies exploring con-
current administration of platinum-based chemotherapy and PD-1/
PD-L1 blockade in patients with metastatic bladder cancer did not 
demonstrate improvements in survival, those studies pooled patients 
treated with cisplatin-based and carboplatin-based chemotherapy30,31. 
Cisplatin may induce distinct immunomodulatory effects and com-
bine more favorably with immune checkpoint blockade32. Consistent 
with this hypothesis, CheckMate 901, exploring gemcitabine, cispl-
atin, plus nivolumab versus gemcitabine plus cisplatin in patients 
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with metastatic bladder cancer, did demonstrate an improvement in 
progression-free and overall survival with the immunotherapy com-
bination (https://news.bms.com/news/corporate-financial/2023/ 
Opdivo-nivolumab-in-Combination-with-Cisplatin-Based- 
Chemotherapy-Shows-Overall-Survival-and-Progression-Free- 
Survival-Benefit-for-Cisplatin-Eligible-Patients-with-Unresectable-or- 
Metastatic-Urothelial-Carcinoma-in-the-Phase-3-CheckMate-- 
901-Trial/default.aspx). Sequential chemotherapy followed by switch 
maintenance immune checkpoint blockade has also demonstrated 
improved progression-free and overall survival in metastatic bladder 
cancer and has become a standard of care33,34. The contribution of concur-
rent versus sequential nivolumab to the favorable outcomes observed in  
our study cannot be fully delineated.

Our study has potential limitations. The median follow-up of 
patients achieving a cCR was 30 months at the time of the data lock. 
The vast majority of local and distant recurrences occur within 2 years 
of treatment in previous bladder-sparing studies of MIBC, although 
whether the same pattern and timing holds true for patients not 
undergoing cystectomy or receiving radiation is not well estab-
lished2,26. Therefore, longer-term follow-up data are needed to fully 
understand the impact of this treatment regimen on disease control. 
The need for later cystectomy in a subset of patients developing local 
recurrence after a cCR raises the question of whether all patients 
achieving a cCR should receive (chemo)radiation to further optimize 
the likelihood of bladder preservation. The complex interplay of 
issues related to organ preservation, cancer control and potential 
over-treatment with such an approach warrants further considera-
tion and investigation. Patient-reported outcome data would provide 
important additional context, but such information was not collected 
in our study.

A disconnect between clinical and pathological staging has often 
been cited as a barrier to TURBT plus systemic therapy as definitive 
treatment for MIBC, although many analyses highlighting such a 
disconnect have been retrospective and without uniform approaches 
to clinical response assessment35,36. Notwithstanding, a focus solely 
on the discrepancies between clinical and pathological staging may 
undermine the possibility that cystectomy at the time of local recur-
rence can achieve similar survival to immediate cystectomy in the 
subset of patients with subclinical disease not detected at initial 
clinical restaging. Many cCRs in patients who later develop local 
recurrence may indeed represent ‘major pathological responses’ 
accompanied by a distinct tumor biology and prognosis; the rela-
tively favorable outcomes observed in our patients achieving a cCR 
and undergoing cystectomy for local recurrence is supportive of 
this notion. That cCRs do not align completely with pCRs is unlikely 
unique to bladder cancer. Even in locally advanced mismatch repair 
protein deficient (dMMR) colorectal tumors that are highly sensitive 
to immunotherapy, early data indicate a 100% cCR rate with immune 
checkpoint blockade in a small cohort of patients with dMMR rectal 
cancer deferring definitive surgery or chemoradiation, whereas a 
67% pCR rate was observed with neoadjuvant immune checkpoint 
blockade followed by colectomy in dMMR colon cancer37,38. As defined 
in our study, cCR was associated with favorable bladder-intact and 
overall survival outcomes.

Integrating pre-treatment and on-treatment biomarkers could 
potentially refine selection of patients achieving a cCR after TURBT 
plus systemic therapy for omission of additional local therapy. Muta-
tions in a pre-specified set of genes selected based on previous work15–22 
did not clearly enhance the ability of cCR to identify patients achiev-
ing prolonged bladder-intact survival. Our analysis is limited by the 
potential limitations of tumor-only DNA sequencing, the sample size 
and the paucity of pathogenic alterations in some genes (for example, 
ATM), although other studies have also been unable to confirm the 
relationship between these molecular alterations and clinical outcomes 
in patients with MIBC36,39. Ongoing clinical trials are prospectively 

Table 2 | Performance characteristics of cCR with or 
without genomic alterations in baseline TURBT tissue for 
a composite outcome measure of 2-year bladder-intact 
survival in patients forgoing immediate cystectomy or 
<ypT1N0 in patients undergoing immediate cystectomy

Measure Performance metric

cCR

Sensitivity 0.85 (95% CI: 0.72, 1.00)

Specificity 0.79 (95% CI: 0.66, 0.91)

Positive predictive value 0.72 (95% CI: 0.56, 0.87)

Negative predictive value 0.89 (95% CI: 0.79, 0.99)

cCR + any mutation in FANCC, ATM and/or RB1

Sensitivity 0.31 (95% CI: 0.13, 0.49)

Specificity 0.93 (95% CI: 0.84, 1.00)

Positive predictive value 0.73 (95% CI: 0.46, 0.99)

Negative predictive value 0.67 (95% CI: 0.55, 0.80)

cCR + any pathogenica mutation in FANCC, ATM and/or RB1

Sensitivity 0.19 (95% CI: 0.04, 0.34)

Specificity 1.00 (95% CI: 1.00, 1.00)

Positive predictive value 1.00 (95% CI: 1.00, 1.00)

Negative predictive value 0.66 (95% CI: 0.54, 0.78)

cCR + any mutation in ERCC2

Sensitivity 0.12 (95% CI: 0.00, 0.24)

Specificity 0.95 (95% CI: 0.88, 1.00)

Positive predictive value 0.60 (95% CI: 0.17, 1.00)

Negative predictive value 0.62 (95% CI: 0.50, 0.74)

cCR + any pathogenica mutation ERCC2

Sensitivity 0.08 (95% CI: 0.00, 0.18)

Specificity 0.95 (95% CI: 0.88, 1.00)

Positive predictive value 0.50 (95% CI: 0.01, 0.99)

Negative predictive value 0.61 (95% CI: 0.49, 0.73)

cCR + any mutation in FANCC, ATM, RB1 and/or ERCC2

Sensitivity 0.38 (95% CI: 0.20, 0.57)

Specificity 0.90 (95% CI: 0.81, 0.99)

Positive predictive value 0.71 (95% CI: 0.48, 0.95)

Negative predictive value 0.69 (95% CI: 0.57, 0.82)

cCR + any pathogenica mutation in FANCC, ATM, RB1 and/or ERCC2

Sensitivity 0.23 (95% CI: 0.07, 0.39)

Specificity 0.95 (95% CI: 0.88, 1.00)

Positive predictive value 0.75 (95% CI: 0.45, 1.00)

Negative predictive value 0.66 (95% CI: 0.53, 0.78)

cCR + TMB ≥10 mut/Mb

Sensitivity 0.63 (95% CI: 0.43, 0.82)

Specificity 0.85 (95% CI: 0.74, 0.96)

Positive predictive value 0.71 (95% CI: 0.52, 0.91)

Negative predictive value 0.79 (95% CI: 0.67, 0.91)

cCR + any FANCC, ATM, RB1, ERCC2, and/or TMB ≥ 10 mut/Mb

Sensitivity 0.61 (95% CI: 0.43, 0.80)

Specificity 0.85 (95% CI: 0.74, 0.96)

Positive predictive value 0.73 (95% CI: 0.54, 0.91)

Negative predictive value 0.77 (95% CI: 0.65, 0.90)
aAt least presumed pathogenic mutation, as defined in the Methods.
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assessing the role of such molecular alterations in selecting patients for 
definitive treatment with TURBT plus chemotherapy (NCT02710734 
and NCT03609216). Although VI-RADS25, a standardized approach to 
bladder cancer MRI imaging and reporting, was developed for initial 

bladder cancer staging, our data highlight the prognostic impact of 
this system after systemic therapy for MIBC and the need for further 
study as a tool for selection of patients for bladder-sparing approaches 
in future trials.
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Analysis of circulating immune parameters may facilitate bio-
marker discovery and insights related to the immunomodulatory 
effects of treatment. Mass cytometry analysis of PBMCs revealed that a 
higher abundance of pre-treatment naive CD4 T cells and on-treatment 
naive CD8 T cells was associated with longer metastasis-free and over-
all survival. Multiplex proteomic analysis of plasma revealed that 
increased on-treatment levels of cytotoxicity-related markers TRAIL, 
FasL and CD244 were associated with a higher likelihood of achieving 
a cCR. TRAIL and FasL are members of the tumor necrosis factor (TNF) 
superfamily and are expressed by immune effector cells, whereas 
CD244 is a surface receptor on natural killer (NK) cells and a subset of 
CD8 T cells40. Higher pre-treatment and on-treatment IL6 and ANGPT2 
levels were associated with worse survival outcomes consistent with 
previous clinical and preclinical studies41,42. Overall, these findings are 
suggestive of a more robust NK cell and CD8 T cell immune response 
in patients with a more favorable response to treatment and underly-
ing tumor-promoting inflammation in patients experiencing worse 
outcomes. The mechanisms by which on-treatment augmentation of 
immunity is achieved are currently being further explored, leveraging 
pre-treatment and post-treatment tumor tissue.

In our study, neoadjuvant gemcitabine, cisplatin, plus nivolumab 
after TURBT was associated with a cCR rate of 43%, and clinical response 
assessment identified patients with particularly favorable outcomes 
and facilitated bladder sparing. Genomic, imaging and immunological 
biomarkers have the potential to refine this treatment paradigm, but 
they require further investigation. These findings may help advance a 
more personalized approach to the management of MIBC.
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Methods
Study design
HCRN GU 16–257 is phase 2, investigator-initiated, multicenter 
clinical trial. Cisplatin-eligible patients with MIBC enrolled at seven 
medical centers received treatment with gemcitabine, cisplatin, plus 
nivolumab (Fig. 1a). Clinical restaging was performed after cycle 4. 
Patients achieving a cCR were offered the option to proceed with radi-
cal cystectomy versus retain their bladder and receive eight additional 
doses of nivolumab followed by surveillance. Patients not achieving 
a cCR were recommended to proceed with radical cystectomy. The 
surveillance schedule is outlined in the protocol (Supplementary 
Information). The study was conducted in accordance with the Dec-
laration of Helsinki. The protocol was approved by local ethics com-
mittees at the Icahn School of Medicine at Mount Sinai, the City of 
Hope Comprehensive Cancer Center, the Huntsman Cancer Institute 
University of Utah, the Oregon Health and Science University, the 
Penn Medicine Abramson Cancer Center, the Rutgers Cancer Institute 
of New Jersey, the University of Southern California and the Univer-
sity of Wisconsin, and written informed consent was provided by all 
patients before enrollment. The trial was registered at ClinicalTrials.
gov (NCT03558087).

Patients
Inclusion criteria:

•	 Written informed consent and HIPAA authorization for release 
of personal health information before registration

•	 Age ≥18 years at the time of consent
•	 Eastern Cooperative Oncology Group (ECOG) performance 

status of ≤1 within 28 d before registration
•	 Histological evidence of clinically localized muscle-invasive UC 

of the bladder (that is, cT2N0M0)
•	 Candidate for cystectomy as per treating physician
•	 Adequate organ function
•	 Adequate archival tissue identified at screening (that is, at least 

15 unstained slides or paraffin block)
•	 Women of childbearing potential must have a negative serum or 

urine pregnancy test within 7 d before cycle 1, day 1.

Exclusion criteria:
•	 Prior treatment with systemic chemotherapy for 

muscle-invasive UC of the bladder
•	 Active infection requiring systemic therapy
•	 Pregnant or breastfeeding
•	 Any serious or uncontrolled medical disorder that, in the 

opinion of the investigator, may increase the risk associated 
with study participation or study drug administration, impair 
the ability of the subject to receive protocol therapy or interfere 
with the interpretation of study results

•	 Prior malignancy active within the previous 3 years except for 
locally curable cancers that have been apparently cured

•	 Subjects with active, known or suspected autoimmune disease. 
Subjects with vitiligo, type I diabetes mellitus, residual hypothy-
roidism due to autoimmune condition requiring only hormone 
replacement, psoriasis not requiring systemic treatment or 
conditions not expected to recur in the absence of an external 
trigger are permitted to enroll.

•	 Subjects with a condition requiring systemic treatment with 
either corticosteroids (>10 mg daily prednisone equivalents) or 
other immunosuppressive medications within 14 d of study drug 
administration. Inhaled or topical steroids and adrenal replace-
ment doses >10 mg daily prednisone equivalents are permitted 
in the absence of active autoimmune disease.

•	 Prior treatment with an anti-PD-1, anti-PD-L1, anti-PD-L2, 
anti-CTLA-4 antibody or any other antibody or drug specifically 
targeting T cell co-stimulation or immune checkpoint pathways

•	 Grade ≥2 neuropathy (National Cancer Institute Common Termi-
nology Criteria for Adverse Events (NCI CTCAE) version 4.03)

•	 Prior radiation therapy for bladder cancer
•	 Positive test for hepatitis B virus surface antigen (HBV sAg) or 

hepatitis C virus RNA or hepatitis C antibody (HCV antibody), 
indicating acute or chronic infection

•	 Known history of testing positive for HIV or known AIDS
•	 Evidence of interstitial lung disease or active, non-infectious 

pneumonitis

Treatment
Cycles 1–4 of treatment included gemcitabine 1,000 mg m−2 on days 1 
and 8, cisplatin 70 mg m−2 on day 1 and nivolumab 360 mg on day 1, all 
administered intravenously in 21-d cycles. Patients achieving a cCR and 
opting to proceed without cystectomy received single-agent nivolumab 
240 mg intravenously every 2 weeks for eight doses. Patients with a cCR 
and forgoing immediate cystectomy then proceeded with surveillance 
using the following strategy: urine cytology every 3 months for years 
1–2, every 6 months for years 2–4 and annually for year 5; cystoscopy 
every 3 months for years 1–2, every 6 months for years 2–4 and annu-
ally for year 5; and cross-sectional imaging of the chest, abdomen and 
pelvis every 3 months to year 1.5, every 6 months to year 3 and annually 
to year 5. Patients with an invasive local recurrence were recommended 
to proceed with cystectomy.

Adverse events were graded according to the NCI CTCAE version 
4.03. Adverse events were managed according to algorithms based on 
the specific toxicity as defined in the protocol.

Clinical restaging and cCR definition
After cycle 4 of gemcitabine, cisplatin, plus nivolumab, patients under-
went clinical restaging including MRI of the abdomen and pelvis or CT 
if MRI was contraindicated and CT of the chest, rigid cystoscopy with 
biopsies and urine cytology. Transurethral resection of any visible 
tumor and/or the prior tumor site was performed. In addition, biopsies 
were obtained from the following sites: trigone, left, right, anterior, pos-
terior and dome. In men, prostatic urethral biopsies were performed. 
A cCR was defined as meeting all of the following: (1) no evidence of 
malignancy on biopsy with the exception of low-grade papillary (Ta) 
tumors; (2) no malignant cells on urine cytology; and (3) no evidence of 
local or metastatic disease on cross-sectional imaging. Residual blad-
der wall changes on cross-sectional imaging were interpreted by the 
treating investigator in consultation with the local radiologist and in the 
context of the bladder biopsy results. A blinded post hoc central review 
of the restaging MRI scans was completed by two study radiologists 
(S.L. and B.E.A.) to assign a VI-RADS25 score—a standardized approach 
to bladder cancer MRI assessment and reporting. Inter-rater agree-
ment was assessed using the weighted kappa statistic43. The VI-RADS 
value from the more experienced reviewer (S.L.) was used when there 
was not agreement.

PD-L1 immunohistochemistry on baseline TURBT specimens
Immunohistochemistry for PD-L1 was performed in the Department of 
Pathology at the Mount Sinai Hospital using the 22C3 antibody clone. 
PD-L1 expression was quantified by a single genitourinary pathologist 
(G.K.H.) blinded to clinical outcome data using the combined positive 
score (CPS), defined as the percentage of PD-L1-expressing tumor and 
infiltrating immune cells relative to the total number of tumor cells. A 
cutpoint of CPS ≥ 10 was used to define ‘high’ PD-L1 expression as per 
previous studies in UC44.

DNA sequencing of baseline TURBT specimens
Archival baseline TURBT tissue underwent tumor-only targeted 
DNA sequencing using the Illumina NextSeq platform (Caris Life Sci-
ences). An Agilent custom-designed SureSelect XT assay (Caris MI 
TumorSeek 592-Gene NGS Panel) was used to enrich 591 whole-gene 
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targets. Sequencing and gene variant calling were carried out as 
previously described; the pipeline automatically filters out known 
common germline population variants (that is, from databases such 
as dbSNP) and flags pathogenic mutations that are potentially ger-
mline45. To address artifacts that might be introduced in formalin-fixed, 
paraffin-embedded (FFPE) samples, samples with low depth or unusual 
variant composition are flagged for review and potential resequencing. 
Multiple non-reference reads (>20) were needed to support variant call-
ing. In addition, if forward and reverse reads at the single-nucleotide 
polymorphism (SNP) locations largely deviated from balance, the vari-
ants were filtered out. For the flanking regions around the SNPs in the 
genes in Fig. 3, the mean sequencing depth was 1,243 (137–6,407). Muta-
tions were considered pathogenic or presumed pathogenic according 
to guidelines set by the American College of Medical Genetics and 
the Association for Molecular Pathology46. Mutations in ERCC2 were 
further annotated incorporating the results of published functional 
assays (K.M.)47. TMB was calculated using only missense mutations as 
previously described48.

Mass cytometry (CyTOF)
Mass cytometry (CyTOF) was performed on PBMCs obtained on cycle 
1, day 1 and cycle 3, day 1 of treatment. PBMCs were stained with the 
CyTOF antibody panel detailed in Supplementary Table 5. All antibodies 
were either purchased pre-conjugated from Fluidigm or conjugated 
in-house (using commercial X8 polymer conjugation kits purchased 
from Fluidigm) at the Human Immune Monitoring Center (HIMC), 
Icahn School of Medicine at Mount Sinai. All in-house conjugated 
antibodies were titrated and validated on healthy donor PBMCs. For 
longitudinal monitoring of phenotypic changes, cells from selected 
timepoints were thawed, counted and assessed for viability using the 
Nexcelom Cellaca Automated Cell Counter (Nexcelom Bioscience) 
along with acridine orange/propidium iodine staining (Nexcelom 
Bioscience). For sample timepoint batching, live-cell CyTOF barcod-
ing was performed using anti-B2M antibodies conjugated to unique 
cadmium isotopes. Rhodium-103 viability and Human TruStain FcX 
staining were performed simultaneously at room temperature for 
30 min. After cell washing in flow cytometry buffer (1× PBS + 0.2% BSA 
+ 0.05% NaN3), cells were stained with a cocktail of surface antibodies 
(Supplementary Table 5). Surface-stained cells were further fixed 
with 1.6% formaldehyde. Each sample was then barcoded with the 
CyTOF Cell-ID 20-Plex Palladium Barcoding Kit (Fluidigm), pooled 
and fixed in freshly made 4% paraformaldehyde containing 125 nM 
intercalator-Ir (Fluidgm) and 300 nM OsO4 (Acros Organics) and stored 
at −80 °C in FBS + 10% DMSO. Samples were washed with cell staining 
buffer (Fluidigm) and re-suspended in CAS buffer containing EQ nor-
malization beads (Fluidigm) and acquired on a Helios mass cytometer 
equipped with a wide-bore sample injector at an event rate of <400 
events per second. After acquisition, repeat acquisitions of the same 
sample were concatenated and normalized using Fluidigm software. 
The FCS file was further cleaned using the HIMC internal pipeline. 
The pipeline removed any aberrant acquisition time windows of 3 s 
where the cell sampling event rate was too high or too low (2 s.d. from 
the mean). EQ normalization beads spiked into every acquisition and 
used for normalization were removed, along with events that had low 
DNA signal intensity. The pipeline also was used to demultiplex the 
cleaned and pooled FCS files into constituent single-sample files. The 
cosine similarity of every cell’s Pd barcoding channels to every possible 
barcode used in a batch was calculated and then was assigned to its 
highest similarity barcode. Once the cell had been assigned to a sample 
barcode, the difference between its highest and second highest simi-
larity scores was calculated and used as a signal-to-noise metric. Any 
cells with low signal to noise were flagged as multiplets and removed 
from that sample. Finally, acquisition multiplets were removed based 
on the Gaussian parameters Residual and Offset acquired by the Helios 
mass cytometer.

Astrolabe was employed for automated computational annota-
tion (Astrolabe Diagnostics). CyTOF analysis was performed using 
Astrolabe annotated data and statistical modeling with R. The data 
were loaded into R using the package ‘orloj’. Astrolabe gating strategies 
were manually reviewed for a subset of samples. Data were uploaded 
to Cytobank for quality control analysis and visualization.

Multiplex protein immunoassay
Plasma (cycle 1, day 1 and cycle 3, day 1) and urine (at time of restag-
ing) were analyzed using the Olink Immuno-Oncology panel, which 
measures 92 proteins involved in immune response and tumor biology, 
using the Olink multiplex assay (Olink Bioscience) according to the 
manufacturer’s instructions. The Olink panel uses proximity extension 
assay technology, which relies on pairs of DNA-labeled antibodies that 
bind to target proteins and generate unique reporter molecules that 
can be quantified by real-time polymerase chain reaction. The Olink 
panel provides normalized protein expression units (NPX), which are 
log2-transformed values proportional to protein concentration. One 
NPX difference is equal to a doubling of the protein concentration.

Statistical analysis
The co-primary objectives of the study were to (1) estimate the cCR 
rate with gemcitabine, cisplatin, plus nivolumab and (2) assess the 
positive predictive value of cCR for a composite outcome measure of 
(1) 2-year metastasis-free survival in patients achieving a cCR and opting 
to not undergo immediate cystectomy or (2) <pT1N0 in patients with 
a cCR who opted for immediate cystectomy. Secondary objectives 
included assessing the association between genomic alterations in a 
pre-specified panel of genes detected in pre-treatment TURBT tissue 
(ERCC2, ATM, RB1 and FANCC15–22) as well as TMB (using an established 
cutpoint of ≥10 mut/Mb23,24) and clinical outcomes. Additional second-
ary objectives included safety, metastasis-free survival, overall survival 
and bladder-intact survival.

The sample size was based on the following assumptions: (1) 
patients without a cCR would not be suitable to forgo cystectomy; (2) 
~40% of enrolled patients would achieve a cCR; and (3) ~35% of enrolled 
patients would achieve the composite outcome measure. Therefore, 
our assumption implied that the negative predictive value of a cCR 
would be 1. The sample size was based on the CI width of the positive 
predictive value of cCR for the composite outcome measure and gen-
erated such that the lower bound of the 95% one-sided CI exceeded 
80%. This required enrollment of 68 patients, and the sample size was 
increased to 76 to account for potential missing data.

Rates were calculated using percentages and compared among 
different groups using Fisher’s exact test. Time-to-event outcomes 
were analyzed using the Kaplan–Meier method and log-rank test. 
When comparing time-to-event outcomes for restaging cCR status 
and restaging VI-RADS, landmark analyses were conducted using the 
restaging times as the landmark time (that is, time 0). P values less than 
0.05 were deemed statistically significant.

For analysis of multiplex protein immunoassay (Olink) data, the 
data were normalized with the reference samples using R software. 
The data distribution per sample was compared, and samples were 
inspected with warnings after NPX conversion. For CyTOF analysis, the 
data were normalized to percent of cell abundance and 95th percentile 
of surface protein expression. For Olink and CyTOF, differential protein 
expression and differential cell abundance, respectively, were calcu-
lated using a mixed effect linear model strategy to adjust for relevant 
clinical variables (ECOG performance status) and demographics (age, 
race and gender). First, the variance profiles and data distributions were 
explored to identify potential biases and assess the effect of relevant 
covariates in the analysis using the packages lme4, variancePartition 
and Dream. For Olink and CyTOF, quality control analysis served to 
identify biases such as low detection and poor sample quality. The fil-
ters included removing variables with more than 40–70% not available 
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or under the limit of detection values. The variables were verified as 
linearly independent such that there was no redundancy in the data. 
After quality control, individual expression or abundance was mod-
eled as a function of relevant endpoints and covariates. Differential 
expression or abundance analyses were performed applying a contrast 
matrix to each regression model (one per endpoint) and using the mod-
erated t-statistic or log odds when appropriate. False discovery rate 
adjustment was performed on resulting P values for multiple testing 
as described by Benjamini and Hochberg49. The Kaplan–Meier method 
was used to estimate metastasis-free and overall survival. Compari-
sons of time-to-event distributions between groups were made with 
the log-rank and Gehan–Breslow tests. Univariable Cox proportional 
hazard regression models were used to estimate the hazard ratios and 
corresponding 95% CIs for metastasis-free and overall survival. Land-
mark analyses were employed for cycle 3, day 1 or restaging timepoints. 
All statistical analyses were performed using SAS software version 9.4 
(SAS Institute) and RStudio version 4.0.0 (R Core Team).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
In accordance with NIH’s Genomic Data Sharing Policy, the DNA 
sequencing data used to support the findings of this study have been 
deposited under controlled access in the database of Genotypes and 
Phenotypes (dbGaP) under accession number phs0003372. Genomic, 
clinical, mass cytometry and protein analyte data from this study used 
to support this publication will be made available upon reasonable 
request from a qualified medical or scientific professional for the 
specific purpose laid out in that request and may include de-identified 
individual participant data. Requests for secondary use of this data 
will require completing a data use agreement (https://osp.od.nih.gov/ 
wp-content/uploads/Model_DUC.pdf) and submitting a data access 
request to the NIH.
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Extended Data Fig. 1 | Schematic representation of the design of HCRN 
GU16-257. Patients with muscle-invasive urothelial cancer of the bladder 
diagnosed based on standard of care TURBT (transurethral resection of bladder 
tumor) received four cycles of gemcitabine, cisplatin, plus nivolumab followed 
by clinical restaging consisting of cystoscopy with biopsies, urine cytology, 
and imaging including MRI (magnetic resonance imaging) of the bladder (or 
computed tomography scan if MRI was contraindicated). Patients achieving 
a clinical complete response (cCR) were offered the option to proceed with 

immediate cystectomy versus proceed without cystectomy and receive an 
additional 4 months of single-agent nivolumab followed by surveillance. 
Patients without a cCR were recommended to undergo immediate cystectomy. 
The primary objectives were to estimate the cCR rate and to assess the positive 
predictive value (PPV) of cCR for a composite outcome measure (MFS, 
metastasis-free survival). *Patients achieving a clinical CR were offered the option 
to forgo cystectomy or proceed with immediate cystectomy.
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Extended Data Fig. 2 | Vesical Imaging-Reporting And Data System (VI-RADS) 
scoring of bladder magnetic resonance imaging (MRI) post-treatment 
with gemcitabine, cisplatin, plus nivolumab and association with clinical 
outcomes. (a) Representative baseline image demonstrating posterior bladder 
wall mass and post- gemcitabine, cisplatin, plus nivolumab MRI sequences scored 
as VI-RADS 1. (b) Representative baseline image demonstrating posterior bladder 

wall mass and post- gemcitabine, cisplatin, plus nivolumab MRI sequences 
scored as VI-RADS 5. (c) Distribution of VI-RADS scores on MRI of the bladder 
post- gemcitabine, cisplatin, plus nivolumab (n = 50). (d) Landmark analysis for 
metastasis-free survival in study cohort with available restaging MRI scans  
(n = 50) according to VI-RADS 1-2 versus 3–5.
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Extended Data Fig. 3 | Relationship between PD-L1 immunohistochemical 
staining of pre-treatment transurethral resection of bladder tumor 
specimens (n = 59) and clinical outcomes. (a) Relationship between PD-L1 
immunohistochemical staining and scoring according to the combined positive 
score (CPS) and achievement of a clinical complete response (Y, yes; N, no) in  
59 patients with available samples for testing. Box and whisker plots demonstrating 
CPS for patients achieving a clinical complete response (min 0, max 95, median 

5, 1st quartile 1, 3rd quartile 20) and not achieving a clinical complete response 
(min 0, max 95, median 1, 1st quartile 0, 3rd quartile 5). (b) Kaplan–Meier curve 
for metastasis-free survival according to PD-L1 expression of baseline TURBT 
specimens using the cut-point of CPS ≥ 10 versus < 10. (c) Kaplan–Meier curve 
for overall survival according to PD-L1 expression of baseline TURBT specimens 
using the cut-point of CPS ≥ 10 versus < 10.
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Extended Data Fig. 4 | Peripheral blood mass cytometry (CyTOF) and 
association with response and overall survival. (a) Heatmap, showing the 
differential abundance results between cell populations and association with 
clinical complete response (cCR). The x-axis shows the cell type annotation 
from ASTROLABE. The y-axis shows the timepoint of the comparison between 
responders (Y) and non-responders (N). The direction of the logFC is dictated  
by the comparison. Negative logFC indicates increase of expression in 
responders. The size of the circle indicates the significance. The larger the circle 
the smaller the p value. Additionally, the stars on top of the circles indicate  
p < 0.05 significance. Circles without stars indicate p > 0.05 or non-statistically 

significant. (b) Peripheral blood CyTOF data. Volcano plot for overall survival 
(OS) based on cycle 1 day 1 (C1D1) abundances of cell populations showing log 
rank test (y-axis) and Cox regression hazard ratio (x-axis). Cell abundances 
significant for both tests are shown in pink. A lower hazard ratio (left side of 
the black line) is associated with reduced risk. (c) Peripheral blood CyTOF data. 
Volcano plot for OS based on cycle 3 day 1 (C3D1) abundances of cell populations 
showing log rank test (y-axis) and Cox regression hazard ratio (x-axis). Cell 
abundances significant for both tests are shown in pink. A lower hazard ratio  
(left side of the black line) is associated with reduced risk.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Peripheral blood protein analytes and association 
with response and overall survival. (a) Volcano plot demonstrating trend in 
peripheral blood analytes by Olink from cycle 1 day 1 (C1D1) to cycle 3 day 1 (C3D1) 
demonstrating largest increase in PD-1 (PDCD1). (b) Peripheral blood protein 
analyte data. Volcano plot for overall survival (OS) based on C1D1 levels of protein 
analytes showing log rank test (y-axis) and Cox regression hazard ratio (x-axis). 
Analytes significant for both tests are shown in pink. A lower hazard ratio (left 
side of the black line) is associated with reduced risk. (c) Peripheral blood protein 
analyte data. Volcano plot for overall survival (OS) based on C3D1 levels of protein 
analytes showing log rank test (y-axis) and Cox regression hazard ratio (x-axis). 
Analytes significant for both tests are shown in pink. A lower hazard ratio (left 
side of the black line) is associated with reduced risk. (d) Kaplan-Meier curves 
showing better OS as measured from C3D1 in patients with lower versus higher 
peripheral blood levels of angiopoietin-2 (ANGPT2). (e) Peripheral blood protein 

analyte data. Volcano plot for metastasis-free survival (MFS) based on changes 
in levels of protein analytes from C1D1 to C3D1 showing log rank test (y-axis) and 
Cox regression hazard ratio (x-axis). Analytes significant for both tests are shown 
in pink. A lower hazard ratio (left side of the black line) is associated with reduced 
risk. (f) Kaplan-Meier curves for the proteins in E showing MFS for patients with 
an increase in PGF, MMP7, or IL6 from C1D1 to C3D1 versus a decrease in levels 
of these proteins. (g) Peripheral blood protein analyte data. Volcano plot for OS 
based on changes in levels of protein analytes from C1D1 to C3D1 showing log 
rank test (y-axis) and Cox regression hazard ratio (x-axis). Analytes significant 
for both tests are shown in pink. A lower hazard ratio (left side of the black line) is 
associated with reduced risk. (h) Peripheral blood protein analyte data. Line plots 
showing individual changes in protein levels from C1D1 to C3D1. N = 64 patients 
for each analyte for C1D1 to C3D1 comparisons.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02568-1

Extended Data Fig. 6 | Urine protein analytes and association with response 
and survival. (a) Urine Olink protein analyte data. Volcano plot showing 
the differential expression at time of restaging among patients achieving or 
not achieving a clinical complete response. The statistical significance or 
-log10(Pval) is shown on y-axis and log2 protein levels is shown on x-axis.  

(b) Urine protein analyte data. Volcano plot for overall survival (OS) based 
levels of protein analytes in the urine at the time of restaging showing log rank 
test (y-axis) and Cox regression hazard ratio (x-axis). Analytes significant for 
both tests are shown in pink. A lower hazard ratio (left side of the black line) is 
associated with reduced risk.
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Extended Data Table 1 | Association between baseline clinical stage and cCR rate
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Extended Data Table 2 | Number of treatment-emergent grade ≥3 adverse events occurring in ≥10% patient(s)* (n = 76 
patients) per NCI CTCAE version 4.03
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Extended Data Table 3 | Association between pre-specified genomic alterations in pre-treatment transurethral resection of 
bladder tumor tissue and likelihood of achieving a cCR. P values are based on Fisher’s exact test
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