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Multiparametric cellular and spatial 
organization in cancer tissue lesions with a 
streamlined pipeline
 

Multiplex immunostaining analysis remains fragmented, underperforming 
and labour intensive despite tissue proteomic methodologies achieving 
ever-increasing marker complexity. Here we propose an open-source, 
user-guided automated pipeline that streamlines start-to-finish, single-cell 
resolution analysis of whole-slide tissue, named multiplex-imaging analysis, 
registration, quantification and overlaying (MARQO). MARQO integrates 
elastic image registration, iterative nuclear segmentation, unsupervised 
clustering with mini-batch k-means and user-guided cell classification 
through a graphical interface. We compare and validate MARQO using 
multiplexed immunohistochemical consecutive staining on a single slide 
using human tumour and adjacent normal tissue samples. Performance 
is compared with manually curated pathologist determinations and 
quantification of multiple markers. We optimize MARQO to analyse diverse 
tissue sizes from whole tissue, biopsy, and tissue microarray and staining 
approaches, such as singleplex immunohistochemistry and 20-colour 
multiplex immunofluorescence, to determine marker co-expression 
patterns in multiple human solid cancer types. Lastly, we validate CD8+ 
T cell enrichment in hepatocellular carcinoma responders to neoadjuvant 
cemiplimab in a phase 2 clinical trial, further showing the ability of MARQO 
to identify spatially resolved in situ mechanisms by providing multiplex 
whole-slide single-cell resolution data.

Multiplex immunohistochemistry (IHC) and multiplex immuno-
fluorescence (mIF) are essential imaging tools for determining 
single-cell-resolution protein co-expression levels while maintaining 
spatial tissue integrity. Recent technologies, such as co-detection by 
indexing (CODEX)1, cyclic immunofluorescence (CyCIF)2, mIF3, multi-
plexed ion beam imaging (MIBI)4 and multiplexed immunohistochemi-
cal consecutive staining on a single slide (MICSSS)5, have drastically 
increased the number of targeted proteins stained on one slide, creating 
many opportunities to better understand tissue organization and cell 
infiltration. In fact, characterizing and spatially understanding immune 
cell recruitment and organization in cancer lesions during treatment 
with immune checkpoint blockade (ICB) treatment has helped elucidate 

mechanisms of response or resistance and clarify interactions among 
cells, emphasizing the feasibility and advantage of multiplex imaging 
technologies6. While the experimental workflow of imaging technolo-
gies has been increasingly streamlined, the methodology for analysing 
and producing whole-slide, quantitative multiplex data remains dis-
crepant and computationally intensive, if at all possible, with available 
third-party analysis tools7,8. Although artificial intelligence (AI) is being 
investigated as a solution, proprietary algorithms make it difficult to 
accept outputs without confirmation from pathology review. There-
fore, a pipeline that reliably streamlines and integrates whole-slide 
analysis for multiplex and singleplex IHC and immunofluorescence 
using a largely automated but user-guided approach is critically needed.
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Results
MARQO enables analysis of diverse imaging technologies
MARQO was tested and validated for its ability to analyse MICSSS, 
mIF (COMET IF) and singleplex IHC (multiple chromogens) using the 
workflow described in Fig. 1. Following each respective protocol for 
producing and scanning all stained tissue slides, MARQO can analyse 
these datasets locally or via a cluster. To begin the analysis, the user 
operates the Command Prompt or downloadable GUI to quality control 
each sample by specifying input data types, including the type of assay 
and the name of each stain (Supplementary Video 1). This is followed 
by a tissue masking and, if applicable, a preliminary registration step, 
to ensure that the tissue is being correctly captured. The next steps of 
the pipeline run automatically and depend on the type of data being 
analysed. For example, while IHC technologies require a colour decon-
volution to separate the chromogen from the nuclear counterstain 
(usually haematoxylin), multiplex immunofluorescence images contain 
a single stain per channel in a multidimensional array, which usually 
requires a denoising step. The pipeline splits the tissue into evenly sized 
tiles and, because of its advanced workload distribution architecture, 
enables parallel analysis of these tiles across multiple independent 
CPUs or machines. This substantially accelerates computation, allow-
ing for the analysis of hundreds to thousands of tiles simultaneously, 
constrained only by the user’s available hardware resources. During 
the per-tile analysis, the registration, segmentation and quantifica-
tion modules are enacted, again dependent on the technology being 
analysed. While some mIF technologies require the registration step2, 
others are already aligned and can forgo this step9. This step is followed 
by an unsupervised clustering module, in which each stain is treated 
as an independent input, and segmented cells are compartmented 
into multiple clusters. The user is subsequently prompted to perform 
another quality control to review the performance of the analysis and 
binarize the positivity of each cluster per marker.

To promote seamless integration into workflows and other soft-
ware, MARQO produces intermediate file types compatible with other 
platforms, such as QuPath, that the user can conveniently drag and 
drop for continued analyses (Supplementary Table 1).

Improved segmentation via iterative cell staining
For MICSSS and some mIF, repetitive nuclear staining can be harnessed 
to clarify cell boundaries and refine imaging data. Whereas some mIF 
technologies use 4′,6-diamidino-2-phenylindole (DAPI) for nuclear 
counterstaining, MICSSS counterstains nuclei with haematoxylin per 
staining cycle iteration. For this reason, we stress the benefits of multi-
ple nuclear or cytoplasmic stains while using MICSSS in our validation. 
MARQO performs a new registration technique for MICSSS in which 
each tile per iterative stain is matched to the respective tile of the first 
stain that encompasses roughly the same tissue area. This process 
results in parallel batches of tiles that are aligned by their deconvo-
luted nuclear stains, which is assumed to remain consistent across each 
batch because there is no chromogen or other-coloured artefact in this 
channel (Supplementary Fig. 2). MARQO then performs nuclear seg-
mentation iteratively across stains per batch of tiles via an open-source 
pretrained package named StarDist26 (Fig. 2a). The pipeline leverages 
the strength of multiplex nuclear staining to enhance segmentation 
accuracy. MARQO systematically analyses each nuclear object iden-
tified across multiple stains. A nuclear object is retained in the final 
composite segmentation mask if its centroid is consistently detected 
in at least 60% of the iterations (default threshold) within a predefined 
distance of 3 µm (default, equivalent to 30% of the average immune 
cell diameter of 10 µm). This threshold accounts for potential registra-
tion errors, with both parameters fully adjustable for specific needs. 
Reconciling across multiple stains permits the pipeline to have a larger 
sample size to evaluate whether a cell is a true-positive-segmented cell 
versus a red blood cell (RBC), an artefact or a cell lost from tissue dam-
age that was deemed a false-positive-segmented cell. Similarly, on the 

In this study, we report the MARQO pipeline and its validation by 
a pathology team. It uses multiple interchangeable modules including 
dynamic deconvolution of channels, co-registration, segmentation 
of cell nuclei and unsupervised clustering of unique cell populations, 
all performed locally or in a cluster. MARQO leverages parallel and 
distributed computing to efficiently process workloads, scaling 
beyond the limitations of a single central processing unit (CPU) by 
distributing tasks across multiple independent machines in a clus-
ter or cloud environment. This architecture enables rapid analysis 
of massive cohorts, with on-demand scalability reducing analysis 
time per cohort to nearly the theoretical minimum (Supplementary 
Fig. 1). Each step in the pipeline has adjustable parameters that have 
been optimized and can be adjusted for diverse tissue types and 
staining protocols (MICSSS5, COMET immunofluorescence9, Orion10 
and Vectra11). Other recent multiplex analysis tools focus on specific 
aspects of the quantification methodology, such as co-registration 
or nuclear segmentation (ASHLAR12 and MCMICRO8), requiring the 
user to toggle across applications and learn new software. This frac-
tionation of software is a hurdle for harmonized quantification across 
platforms, an essential requirement of large networks for correlative 
science, such as CIMAC-CIDC13. MARQO uses the iterative qualities 
of multiplex data to help refine repetitive data, using the multiplex 
aspect of the assay to its advantage. Moreover, whereas existing tools 
are mostly released as GitHub repositories, only operational through 
the Command Prompt interface, MARQO is easily operational for 
both computational and non-computational users via a Command 
Prompt interface and a graphical user interface (GUI). Lastly, we 
have used a user-guided approach to characterize cell populations 
because fully automated decisions about positive signals are not yet 
clinically acceptable without pathologist confirmation. The approach 
of unsupervised clustering followed by a supervised binarization of 
each cluster by the user permits MARQO to accurately quantify and 
cluster cell populations across multiple platforms, tissue types and 
markers of interest, without the need to train the machine learning 
algorithms, while still permitting closely monitored quality control 
by the user.

We applied MARQO to whole-slide MICSSS data, a technology 
developed and broadly used by our laboratory14–16. MICSSS data remain 
difficult and labour intensive to analyse with existing tissue analysis 
tools, such as HALO17 and Visiopharm18. Moreover, image-processing 
software, such as QuPath19, still lacks key functionalities for steps in 
multiplex processing that we have prioritized in MARQO, including 
the ability to elastically register whole-slide images, segment cells 
iteratively across markers to produce one composite segmentation 
mask and cluster cell populations via unsupervised learning. Therefore, 
MARQO provided the necessary framework to study spatial immune 
responses to ICB in cancer. Although neoadjuvant ICB targeting the 
PD1/PDL1 axis has revolutionized treatment approaches for various 
cancer types20, the response to immunotherapy varies in success21 and 
many patients experience no clinical benefit. CD8 T cell enrichment 
has been associated with the response to ICB22–24. Leveraging a trial 
of neoadjuvant cemiplimab (anti-PD1 antibody; ClinicalTrials.gov  
NCT03916627, cohort B) in patients with hepatocellular carcinoma 
(HCC)25, we recently corroborated these findings in responders to 
ICB. However, to fully understand the spatial dynamics and mecha-
nisms driving the response to treatment, we assessed multiple cell 
populations using MICSSS and used MARQO to resolve the mul-
tiparametric cellular and spatial data in responders to ICB relative to 
non-responders. With MARQO, we detected CD8 T cell enrichment in 
specific tissue areas defined by a pathologist as tumour, fibrosis and 
necrosis. In addition, we analysed immune cell organization and prox-
imities in tumours pre- and post-treatment. As a result of this method 
of multiplex imaging and analysis, we are better able to elucidate the 
quantitative mechanisms that underlie the responses and resistance 
to neoadjuvant anti-PD1 treatment.
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basis of staining and available metadata, the pipeline further refines 
the mask by eliminating hypothesized RBCs, which we have validated 
to the manual work of a pathologist (Supplementary Fig. 3a–c).

To assess and validate the performance of MARQO’s composite 
segmentation, we used samples stained with an onco-immune-targeted 
MICSSS panel. We analysed a cohort of patients with HCC who received 
neoadjuvant cemiplimab treatment followed by surgical resection; 
for these patients, we analysed pretreatment biopsies and HCC 

resections. Using ten 500 µm × 500 µm regions of interest (ROIs) 
from these tissues, we compared the composite segmentation per-
formance of MARQO with that of manual segmentation by a patholo-
gist using a conventional third-party analysis tool, QuPath19. We found 
that MARQO’s segmentation performed well across heterogeneous  
densities, which is usually problematic because cell segmentation is 
set up for global and homogeneous density (Fig. 2b). Overall, MARQO 
segmented ±10% of total cells determined manually in >50% of all 
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Fig. 1 | MARQO pipeline overview. Variable formalin-fixed and paraffin-
embedded (FFPE) tissue sizes from small TMA cores to whole-slide tissue 
resections can be analysed using a tiling architecture, which can be performed 
locally or externally via a cluster. The pipeline is compatible for slides stained 
with MICSSS, singleplex IHC, or mIF and CyCIF. After the user provides a brief 
quality control when importing data, the pipeline independently processes 
each staining technology differently. MICSSS and IHC undergo dynamic 
deconvolution to extract nuclear and chromogen staining. All technologies 
are converted into numerous smaller, overlapping tiles for faster, parallel 
processing. The MICSSS and CyCIF technologies undergo a series of 
registrations. All technologies are segmented for cell nuclei, where MICSSS  
uses a composite methodology from its iterative nuclear staining.  

All technologies quantify the chromogenic positivity staining, nuclear staining 
and morphological information. These metadata are used for cluster-based 
classification, after which the user quality controls to assess which markers 
the clusters truly stain positively or negatively for. The user can use MARQO 
downstream analysis tools to further review data. These modules can reconcile 
tissue compartment annotations from QuPath, recreate large chromogenic or 
whole-channel image files that combine multiple individual tiles, create figure-
ready qualitative overlays to visualize cell populations and export data for third-
party programs. At multiple checkpoints in the pipeline, intermediary files that 
are also easily integrated into third-party programs are exported. Illustrations 
created with BioRender.com.
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ROIs and ±20% of total cells determined manually in >90% of all ROIs 
(Fig. 2c,d). MARQO achieved an average Sørensen–Dice coefficient 
(Dice score) of 83% using a point-in-polygon strategy, which considered 
a MARQO-segmented cell a true cell if the pathologist had clicked on 
a point within the cell’s nuclear boundaries (Supplementary Fig. 3d). 
In accordance with recent guidelines for including tissue variability27 
and pathologist supervision28 for improving automated pathology 
algorithms, these data support the claim that MARQO’s composite seg-
mentation algorithm more accurately segments cells compared with 
the more conventionally used singular stain segmentation method, 
and it segments similarly to the manual segmentation performed by a 
pathologist. In summary, we believe MARQO’s composite segmentation 
and elastic registration methodology provide the necessary multiplex 
preprocessing to ensure the most accurate cell quantification and 
downstream analysis (Supplementary Fig. 4).

Fast unsupervised clustering improves cell classification
Once a batch of tiles representing an entire tissue section is analysed, 
a features table of segmented cells is appended with metadata associ-
ated with all segmented cells within that region, which provides the 
framework for the classification module. Although many current clas-
sification approaches leverage a supervised machine learning algo-
rithm trained per dataset29, we envisioned an all-encompassing model 
that could be applied across multiple technologies, tissue types and 
markers without additional training. Moreover, our pipeline contains 
tunable parameters that, despite being optimized for the technolo-
gies we present here, can be tailored for other technologies. These 
values are all documented with descriptions in a markdown section 
on our application, allowing the user to adapt them as necessary. The 
defaulted values were optimized for the technologies presented here 
within reasonable computation times; therefore, we recommend these 
values be altered only with an adequate understanding of their use or 
experience in computational image analysis. We also wanted to permit 
close, user-guided interpretation of the results because learning models 
are not mature enough to be used entirely without human supervision 
in digital pathology28. MARQO combines unsupervised clustering for 
all cells and supervised classification per marker for each cluster by the 
user. MARQO performs a faster clustering approach for larger samples 
(mini-batch k-means) and a more intensive, but lengthier, clustering 
approach for smaller samples (Gaussian mixture model), if needed. By 
default, and for the analyses in this article, MARQO uses the mini-batch 
k-means algorithm because of its scalability and quick performance 
for larger datasets without significant compromise in accuracy (Sup-
plementary Fig. 1c). When the automated clustering finishes, the user 
operates a GUI to assess which of the produced clusters of cells are 
positive or negative per marker (Fig. 3a and Supplementary Video 2). 
If the user deems a certain cluster still mixed with positive and negative 
cells, then the user may ‘reclassify’ a cluster to output a new round of 
subtiers within the original tier, permitting the user to closely fine-tune 
classification outcomes.

To validate the performance of our classification module, we 
leveraged our cohort of resected HCC samples and identified four 

markers that have unique challenges when quantifying with currently 
available platforms: nuclear marker FOXP3 (regulatory T (Treg) cells), 
circular shape membrane marker CD3 (T cells), asymmetrical shape 
membrane marker CD68 (macrophages) and cytoplasmic marker 
PanCK (tumour cells; Fig. 3b). We compared MARQO-positive clas-
sification results after user quality control with the number of posi-
tive cells manually counted by a pathologist. We used 34 ROIs from 
diverse samples and tissue types, which were also deemed as good- or 
poor-quality areas by the pathologist based on the degree of tissue 
damage and staining artefacts. Using the manually counted cells as the 
predictive model, MARQO achieved 83% specificity and a Spearman 
correlation coefficient r = 0.95 (P < 0.0001) for CD3 and 90% specific-
ity and r = 0.90 (P = 0.0002) for FOXP3 (Fig. 3c–e and Supplementary 
Fig. 5). It also achieved 97% specificity and r = 0.70 (P = 0.2333) for 
CD68 and 85% specificity and r = 0.60 (P = 0.4167) for PanCK, markers 
that are conventionally difficult to quantify due to their amoeboid-like 
shapes and heterogeneous staining. We also visualized the perfor-
mance of MARQO classification for additional markers, including 
PD1, CD8, Ki67, αSMA, CD20 and MZB1 (Supplementary Fig. 6). These 
data support the claim that MARQO’s fast user-guided classification 
performs similarly to the lengthy, manual annotations performed by 
a pathologist, which grants the user time and the ability for continued 
downstream analysis.

Diverse tissue sizes and types are processed using MARQO
MARQO can theoretically process tissue of any size due to its tiling 
architecture. However, during multiplex staining, different-sized tissue 
sections possess unique biological, technical and computational chal-
lenges: smaller tissues have increased relative edge effect staining30 
and may incidentally contain rare, niche cell populations, which are 
less likely to be isolated during unsupervised clustering; meanwhile, 
larger tissues are more prone to tissue damage31, frequently suffer 
from tissue folding and require vast computational resources. To 
assess whether MARQO performs similarly across tissues of differ-
ent sizes, we analysed tissue microarray (TMA) cores, core needle 
biopsies and samples from surgical resections that were processed 
with MICSSS (Fig. 4a). Moreover, we assessed and validated classifica-
tion consistency across diverse solid tumour types, as diverse tissues 
can contain unique morphologies and marker expression patterns32 
(Fig. 4b). Following MARQO analysis and user review quality control, 
we determined marker densities for CD3 and PanCK. We chose these 
two markers due to their broad use in imaging as T cell and tumour 
markers. Moreover, CD3 is a membrane marker for smaller cells, while 
PanCK is a cytoplasmic marker for larger cells, enhancing validation 
through diverse cell testing. The cohort included whole-slide resected 
tissue of non-small-cell lung cancer (NSCLC) and TMA cores from 
the following tissue types: NSCLC, head and neck squamous cell car-
cinoma, colorectal cancer, breast cancer, epithelial ovarian cancer, 
pancreatic ductal adenocarcinoma, glioblastoma, renal cell carcinoma 
and melanoma. We compared densities generated by MARQO or by 
a pathologist through a standardized methodology on QuPath19. We 
determined that CD3 had an overall Spearman r = 0.98 (P < 0.0001) 

Fig. 2 | Detailed singular and composite segmentation. a, An example batch of 
tiles that spans 1–n stains from MICSSS undergoes new composite segmentation. 
The first column shows the original staining before segmentation, then the 
nuclear segmentation mask if each marker were independently segmented, then 
the nuclear segmentation from reconciling multiple nuclear stains, followed by 
the composite segmentation with nuclear boundaries extended by 3 pixels to 
simulate cytoplasm. The last column provides examples of the improvements 
that composite segmentation has over the singular segmentation. Scale bar, 
30 µm. b, An example tile of MICSSS depicts MARQO composite segmentation 
across diverse cell densities; the zoomed-in images show how MARQO 
similarly segments in low-, medium- and high-density areas with a 1.6× linear 
magnification relative to the main image. Scale bar, 50 µm. c, Example tiles of 

MARQO-segmented cells compared with a pathologist’s manual identification 
of true cells for low-density (left) and middle- to high-density (right) regions. 
If a manually clicked point resides within the nuclear boundaries of a cell 
segmented by MARQO, that cell is considered ‘MARQO+, manual+’ (red). If no 
point resides within the nuclear boundaries of a cell segmented by MARQO, that 
cell is considered ‘MARQO+, manual−’ (blue). If a clicked point did not reside 
within any MARQO-segmented cell nuclear boundaries, an overlaid circle with a 
radius of 3 pixels (green) is plotted, simulating a ‘MARQO−, manual+’ cell. Scale 
bars, 20 µm. d, Total cell counts segmented are plotted for all tiles (n = 15) for 
our manual quantification (left) versus our MARQO automated quantification 
(right).

http://www.nature.com/natbiomedeng
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and PanCK had an overall r = 0.90 (P < 0.0001) across all tested tissues 
(Fig. 4c). These findings suggest that MARQO performs similarly to 
the manual quantification by pathologists for diverse tissue sizes 
and types.

MARQO integrates workflow for multiple staining 
technologies
Next, we assessed MARQO’s performance to analyse diverse types of 
assay. While MARQO has been optimized for quantifying cell subset 
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Fig. 3 | MARQO classification with validation. a, Following upstream analysis 
and the generation of a metadata CSV for each sample, MARQO classifies cells 
using either the default k-means algorithm or alternative methods, such as 
GMM clustering or third-party tools. MARQO categorizes cells into a predefined 
number of clusters, which users can inspect interactively via the MARQO 
application. Users may further subdivide clusters into subclusters by rapidly 
applying k-means clustering repeatedly to the selected cluster, enabling detailed 
user-guided inspection of each cluster or subcluster. b, We validated with four 
distinct markers: FOXP3, a nuclear marker; CD3, a T cell membrane marker with 
a circular shape; CD68, a macrophage membrane marker with an asymmetrical 
shape; and PanCK, a cytoplasmic tumour marker. Scale bar, 50 µm. c, Precision 
versus recall curves are provided for markers CD3, FOXP3, CD68 and  
PanCK, comparing the MARQO classification performance with manual 
positivity annotations conducted by a pathologist (predictive model).  
A random model is included as a baseline, representing theoretical performance 
from random label assignment based on uniform distribution. d, Scatter plots 

with regression lines illustrate correlations between the total number of cells 
classified as positive manually by a pathologist versus MARQO across  
34 distinct ROIs for the 4 selected markers. Each point represents either biopsy 
or resection tissue, categorized as having good- or poor-quality staining by the 
pathologist. ROIs were chosen to represent varied staining quality and regions 
with tissue damage. Non-parametric Spearman’s correlation coefficients  
(r values) and linear regression analyses were used for markers CD3 (P < 0.0001), 
FOXP3 (P = 0.0002), CD68 (P = 0.2333) and PanCK (P = 0.4167). e, Stacked bar 
graphs depict a representative ROI for each selected marker, illustrating the 
user-based cluster classification per sample and comparing it directly with 
manual annotations provided by the pathologist for the same ROI. Colours within 
bars indicate the proportions of cells classified as positive or negative. Dashed 
lines separate clusters selected as positive (left) or negative (right) by MARQO. 
Total cell counts per cluster are annotated above each bar. CD68 exemplifies 
user-driven reclassification into subclusters. Corresponding ROIs are available in 
Supplementary Fig. 5.
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density based on consecutive stains and multiple markers, we assessed 
its ability to analyse singleplex IHC, an assay often used for routine 
staining of markers of interest. We compared marker densities for 
CD3-stained cells with another commonly used detection reagent, 

chromogen diaminobenzidine (DAB), and used the same reagent used 
for MICSSS, chromogen 3-amino-9-ethylcarbazole (AEC), to look at 
PDL1, a marker used in the clinic for diagnostic and prognostic pur-
poses33. While we acknowledge that this validation is for research 
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Fig. 4 | Validation across diverse tissue sizes and types. a, We tested small TMA 
cores, tissue biopsies and whole-slide tissue resections on MARQO, with these 
tissues tiled and segmented here. Scale bars, 50 µm. b, MARQO’s segmentation 
and classification performance after quality control by the user for markers 
CD3 and PanCK are shown for the following tissue sizes and types: whole-slide 
resected tissue NSCLC and TMA cores for NSCLC, head and neck squamous cell 
carcinoma (HNSCC), colorectal cancer (CRC), breast cancer (BC), epithelial 
ovarian cancer (EOC), pancreatic ductal adenocarcinoma (PDAC), glioblastoma 
(GBM), renal cell carcinoma (RCC) and melanoma (MEL). Scale bars, 50 µm.  

c, Box plots depicting MARQO densities and scatter plots with regression 
analysis lines comparing MARQO densities with QuPath-derived densities for the 
corresponding tissue sizes and types are shown here for markers CD3 and PanCK 
(n = 4 per tissue type). Box plots show the median (centre line), 25th and 75th 
percentiles (bounds of the box), and minimum and maximum values (whiskers). 
For the scatter plot, each plotted point corresponds to a biologically replicated 
resection sample or TMA core. Non-parametric Spearman’s correlation r values 
and linear regression analyses were used and associated P values are shown per 
tissue type per regression.
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purposes only, we show that with further clinical validation MARQO 
may be used in a clinical setting. We determined densities acquired 
by a pathologist with QuPath on an independent cohort of five sam-
ples. For CD3, we determined a Spearman r = 0.60 (P = 0.3500) and for 
PDL1 we determined r = 1.00 (P = 0.0167) for positively classified cells 
between MARQO and QuPath (Fig. 5a). Similarly, to confirm the accu-
racy of MARQO for segmenting and characterizing cell populations for 
non-IHC multiplex technologies, we analysed four whole-slide NSCLC 
samples via COMET immunofluorescence, a technique using mIF. We 
compared cell densities of FOXP3, CD3, CD68 and PanCK between 
MARQO and QuPath, obtaining an overall r = 0.92 (P < 0.0001) for all 
the markers (Fig. 5b). In addition to testing and validating singleplex 
IHC and COMET immunofluorescence, we also tested other platforms 
on MARQO, including Orion10, CODEX1 and CyCIF2 (Supplementary 
Fig. 7 and Supplementary Table 1). Consistent with our previous results, 
these data suggest that MARQO retains high accuracy when analysing 
diverse tissue and assay inputs.

MARQO detects CD8 T cell enrichment in therapy responders
Multiple downstream analyses can be performed in the MARQO GUI 
from the final summary table, which can facilitate further quantifica-
tions and analyses (Supplemental Video 2). We leveraged a clinical 
trial cohort of 18 patients with early stage HCC treated with neoadju-
vant cemiplimab and used MARQO to better understand the immune 
cell infiltration in responders (n = 6) versus non-responders (n = 12). 
We used MICSSS and MARQO to analyse pretreatment HCC biopsies 
(baseline) and HCC surgical resections after two doses of cemipli-
mab (post-treatment) and observed that not only did the response 
to cemiplimab modify the global immune infiltration compared with 
non-responders but the immune landscape was already different at 
baseline between these patients (Fig. 6a). A pathologist demarcated 
tumour, non-tumour-adjacent liver (adjacent), fibrotic and necrotic 
regions in each tissue section using QuPath to understand the specific 
cell distribution among the samples (Fig. 6b,c). We found that, unsur-
prisingly, non-responders were mostly represented by tumour tissue, 
whereas this compartment completely disappeared in responders 
post-treatment. Specifically, we were interested in CD8 T cells, as we 
previously characterized their clinical relevance and spatial interactions 
in response to cemiplimab treatment34. Using our GUI, we reconciled 
the QuPath annotations with cell classification, producing a table that 
identified the location of each cell within tumour, adjacent, fibrotic and 
necrotic areas. We detected enrichment of CD8+CD3+ T cells in fibrotic 
and necrotic areas of post-treatment responders compared with base-
line (P = 0.3398 and P = 0.0267, respectively; Fig. 6d). Interestingly, we 
found that CD8 T cells were already enriched in responders at baseline 
compared with non-responders (P = 0.008). To further explore this phe-
nomenon, we used a neighbourhood analysis approach to determine 
the shortest distance between cell types of interest per cell and how 
the distance varied with treatment in the different annotated areas. We 
found that CD8 T cells tend to be very close to each other in responders 
compared with non-responders in fibrotic and necrotic regions both at 
baseline (P = 0.0012 and P = 0.0187, respectively) and in post-treatment 
fibrosis (P = 0.0162), suggesting immune aggregations (Fig. 6e). In 
comparison, CD8 T cells were generally found within 50 µm of B cells 
and Treg cells, suggesting a potential interaction (Supplementary 

Fig. 8a). From the B cell perspective, we observed that they were 
close to each other in responders compared with non-responders in 
post-treatment necrotic regions (P = 0.0291), and close to CD8 T cells 
in responders’ fibrotic regions in post-treatment compared with base-
line (P = 0.0004) (Supplementary Fig. 8b). In summary, these results 
show the quantitative metrics available using MARQO and provide the 
first example of cellular and spatial reconciliation of cancer lesions  
using MICSSS.

Discussion
In this study, we introduced and validated the MARQO pipeline to quan-
titatively analyse whole-slide singleplex IHC, multiplex IHC and mIF, 
enabling quantitative interpretation of cellular and spatial organization 
in cancer tissue lesions. Through its diverse modules and adjustable 
parameters, MARQO can be tailored to analyse data from multiple plat-
forms, tissue types and markers of interest, outputting comprehensive 
co-expression whole-slide data using a single platform. MARQO and 
its intermediate diagnostic files seamlessly integrate with third-party 
downstream analysis tools. Moreover, MARQO provides a GUI-based 
module that formats the summary outputs to the software of interest. 
Specifically, MARQO provides a throughput whole-slide analysis tool 
for MICSSS, a task that has so far been suboptimal or labour intensive 
using standard tools such as QuPath19, Halo17 or Visiopharm18 due to 
the iterative nature of the staining protocol and need for precise image 
alignment.

AI approaches hold immense promise for analysing diverse tissue 
types. However, their implementation often demands extensive train-
ing datasets and may lack robust mechanisms to ensure signal specific-
ity. To address these limitations while maintaining high specificity, we 
developed a user-guided method that uses dynamic thresholds and 
manual selection of positive versus negative signals to cluster and clas-
sify cell populations effectively. This method offers adaptability and 
precision while paving the way for future integration of AI-based meth-
odologies to enhance specificity validation and dataset generalization. 
Although this approach is designed to be user friendly for non-experts, 
it requires pathology expertise and supervision at this step, similar to 
other platforms dependent on tissue organization knowledge. To alle-
viate the workflow, we enable users to perform these steps either per 
sample or across groups of selected samples. In addition, we provide 
detailed descriptions of all sensitivity parameters, allowing users to 
tailor the pipeline to their specific needs and applications.

MARQO’s performance, benchmarked against pathologist anno-
tations on the samples presented here, highlights its effectiveness 
but also underscores the importance of user quality control during 
this transitional phase of digital pathology. Technical challenges, 
such as tissue damage and border artefacts, can impact automated 
performance, further emphasizing the need for expert oversight. In 
high-throughput scenarios or particularly complex cases, unbiased 
automated methods have the potential to complement or even surpass 
manual annotations by reducing human variability35. As large model 
training continues to advance, these user-guided workflows may evolve 
into fully autonomous AI-driven decision-making tools. Nonetheless, 
with the current user-guided approach, we are confident that MARQO 
can provide robust and reliable data for a wide range of preclinical and 
clinical tissues across various pathologies.

Fig. 5 | Integrative platform for other staining technologies. a, Singleplex 
IHC examples segmented and classified after quality control by the user for 
marker CD3 with chromogen DAB (top) and marker PDL1 with chromagen AEC 
(bottom). Scatter plots with non-parametric Spearman regression analysis 
compare MARQO densities with QuPath-derived densities for CD3 (top) and PDL1 
(bottom). Spearman correlation r values with associated P values are shown per 
marker. Scale bars, 30 µm. b, mIF using COMET immunofluorescence technology 
to assess MARQO’s ability to segment and classify another multiplex technology 
after user quality control. We depict a representative tile with cellular nuclear 

stain DAPI and the 4 previous overlapping markers of interest (n = 4 per marker): 
FOXP3, CD3, CD68 and PanCK. Stemming from this tile (right) is the single DAPI 
stain, adjacent to the MARQO segmentation mask overlaid on the DAPI image. 
Also stemming from the tile (bottom) is each of the marker channels of interest 
above that marker channel with MARQO’s classification channel after user 
quality control overlaid. The top-right panel is a scatter plot with non-parametric 
Spearman regression analysis to compare MARQO densities with QuPath-derived 
densities for all four markers. Spearman correlation r values with associated  
P values are shown per marker. Scale bar, 30 µm.
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An inherent limitation of whole-slide IHC and immunofluores-
cence analysis is the size of the required computational resources. 
While we and other analysis tools8,12 have used a tiling algorithm to 
parallelize processing and reduce computation time, multiple CPUs are 

needed, which are not always available with local resources. Consider-
ing this, biopsy and TMA analyses are feasible locally, but we strongly 
recommend cluster resources for whole-slide multiplex imaging 
analysis. Another limitation includes the quantification of individual 
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Fig. 6 | MARQO identifies CD8 T cell enrichment in responders to anti-
PD1 treatment. a, After classification and review, we identified Treg cells 
(CD3+FOXP3+CD8−), macrophages (CD68+), B cells (CD20+) and CD8 T cells 
(CD3+CD8+) and evaluated their densities across whole-slide tissues for 
responders and non-responders (NRs) to cemiplimab treatment at baseline 
and post-treatment. b, Representative image showing the overlay of the tissue 
with the annotation made by the pathologist using QuPath to demarcate tissue 
region boundaries, including tumour, adjacent, fibrosis and necrosis, for all 
tissues used. Scale bar, 500 µm. c, Pie charts depicting the tissue compartments 
annotated by a pathologist for all samples at baseline and post-treatment for 
responders (n = 4 and 6, respectively) and non-responders (n = 12 for both). 

d, CD8 T cell densities plotted at baseline and post-treatment for NR and 
responder groups within tumour (n = 27), fibrosis (n = 18) and necrosis (n = 15) 
compartments. Data are presented as mean ± s.e.m. Multigroup analyses of 
variance were performed using one-way analysis of variance followed by Šídák 
one-way comparison tests. e, Bar plots depicting the means of the shortest 
distances from CD8 T cells to themselves (left), to B cells (middle) and to  
Treg cells (right) at baseline and post-treatment for non-responders and 
responders within tumour (n = 27), fibrosis (n = 18) and necrosis (n = 15) 
compartments. Data are presented as mean ± s.e.m. Multigroup analyses of 
variance were performed using one-way analysis of variance followed by Šídák 
one-way comparison tests.

http://www.nature.com/natbiomedeng


Nature Biomedical Engineering

Article https://doi.org/10.1038/s41551-025-01475-9

staining as binary outputs, and cell identification and segmentation 
based on nuclear detection with artificial cytoplasmic extension. 
Intensity scoring could be considered for appropriate staining pro-
tocols in future versions, based on expected tier differences during 
selection of similarly stained cell clusters. In addition, extracellular 
matrix evaluation and alternate segmentation protocols could be 
integrated based on membrane markers when available. We are also 
trying to reduce the number of falsely determined double-positive 
cells (doublets) outputted from our classification technique. By calcu-
lating frequencies of respective singlet positive cells, singlet negative 
cells and proximity intensity values for the markers of interest, we 
can determine a probability assignment and redefine the doublet as a 
single-marker-stained cell; we also plan to do this for cells with more 
than two markers co-expressed. These areas of improvement, and addi-
tional tools to further analyse multiplex imaging data, are our current 
targets for future deployments and updates to the available pipeline, 
which can easily be appended as additional modules in our application.

We envision that MARQO will drive quantitative discoveries in 
imaging assays. We used MARQO to quantify enrichment and locali-
zation of CD8 T cells in HCC responders to neoadjuvant cemiplimab. 
These findings elucidate previous hypotheses about the interactions of 
CD8 T cells and will help us better understand mechanisms of response 
or resistance to immunotherapy34. Spatial biology is emerging as a piv-
otal field for biomarker discovery. By understanding tissue organiza-
tion, immune cell infiltration and antigen presentation heterogeneity 
in a harmonized manner, researchers can interpret data across multiple 
studies and platforms, ultimately developing actionable predictive 
tests36–39. With MARQO, we hope pathologists and researchers will 
have a necessary tool to quantitatively analyse whole-slide imaging 
data, augmenting future discoveries and bolstering the field of cancer 
immunology.

Methods
MARQO modules
Operating the MARQO pipeline. The MARQO pipeline can be 
deployed via container technologies, such as Docker and Singularity. 
It builds on Tensorflow’s prebuilt docker image, with a Python virtual 
environment containing all necessary libraries. The container runs 
on virtually any set-up: single or multiple cores, computers, servers, 
high-performance computing clusters or personal machines. Users can 
interact through a web-based GUI or command line interface, using a 
semi-automatic approach to fine-tune parameters for both launching 
and reviewing features (Supplementary Videos 1 and 2).

In the launching tab, users select the imaging modality and initiate 
tissue masking, preliminary registration, tiling (image decomposi-
tion) and colour deconvolution. Although automated, these steps are 
user-modifiable for optimal quality control. For tissue masking, users 
can manually draw regions to override automation. During tiling, users 
define overlap and edge exclusion settings, and the minimum tissue 
content per tile. By default, tissue is split into 1,000 pixel × 1,000 pixel 
tiles (~500 µm × 500 µm)—a balance between analysis count and com-
putational load (Supplementary Fig. 2c). The HistomicsTK channel 
deconvolution module40, which implements a revised method from ref. 
41, dynamically extracts three colour channels using a deconvolution 
matrix derived from the thumbnail image. For MICSSS, this includes 
the chromogen stain, nuclear haematoxylin counterstain and a residual 
channel. Outputs from each step are saved in a configuration file to 
enable reproducibility in future runs.

In the reviewing tab, users can classify cell clusters, stitch regis-
tered whole-slide images into RGB or multichannel formats and recon-
cile compartment annotations to analyse cell infiltration in designated 
regions. These annotations come from a standardized ‘.geojson’ file, 
currently created manually with tools such as QuPath. Future ver-
sions aim to integrate self-supervising annotation tools (for example, 
UNI42). Reconciliation populates the final summary table with the tissue 

compartment for each cell. Users can visualize cell subsets by toggling 
marker combinations in the GUI and obtain quantification and density 
metrics for full tissue or specific compartments. Finally, MARQO out-
puts can be converted to third-party-compatible formats for further 
analysis and figure-ready overlay production (Supplementary Fig. 8a 
and Supplementary Table 1).

MARQO whole-slide registration module. MARQO performs a series 
of registration steps for technologies requiring alignment to enable 
multiplex cell-resolution quantification. During initial quality control 
to launch a job, users perform a preliminary translational registration 
of low-resolution thumbnail images, yielding relative tissue align-
ment across staining iterations. After tiling, batches of tiles have 10% 
overlapping borders with neighbouring batches to permit registra-
tion and segmentation near tile edges without cropping cells. This 
overlap was optimized to enable seamless stitching while minimizing 
redundant computations. Per batch, the MARQO registration module 
deconvolutes tiles to extract nuclear counterstains, which remain 
consistent across stains, unlike tissue morphology or positive signals. 
The deconvolution matrix is dynamically determined during the launch 
step. MARQO then applies affine and elastic registrations to align 
all nth-stained tiles to the first-stained tile using the SimpleElastix43 
registration package parameters optimized on MICSSS images. The 
resulting vector field is applied to each tile’s red, green and blue chan-
nels, enabling cell-resolution registration for each tile batch.

MARQO segmentation module. For each registered tile batch, 
MARQO enacts its segmentation module to identify cells, enabling 
subsequent metadata extraction in the quantification module. For 
technologies with iterative nuclear stains such as MICSSS, it performs 
semantic nuclear segmentation using StarDist—a pretrained algorithm 
that takes RGB IHC images as input and outputs nuclear masks based 
on haematoxylin expression26. StarDist requires training model meta-
data, which is included in MARQO’s Docker environment. To reconcile 
multiple segmentation masks per tile batch, MARQO iterates across 
each nuclear object. If the centroid remains consistent within a tun-
able threshold (default is 60% of stains), the object is retained in the 
final composite mask. Otherwise, it is considered an artefact or a lost 
cell due to tissue damage during staining. For technologies with only 
one nuclear stain, MARQO performs a single segmentation and uses 
this nuclear mask for downstream quantification. StarDist is used for 
singleplex IHC with haematoxylin staining, while a separate StarDist 
model pretrained on the DAPI channel is used for mIF staining, also 
yielding semantic nuclear masks. Whether analysing multiplex or 
singleplex data, MARQO ensures each cell is segmented only once in 
the final mask. As an alternative, users may opt for CellPose44, another 
pretrained deep-learning-based tool for nuclear segmentation43.

MARQO quantification module. In its quantification module, MARQO 
imports the nuclear semantic mask and expands nuclear boundaries by 
a user-defined number of pixels per stain to simulate an artificial cyto-
plasm. The module then extracts pixel-level and morphological meta-
data for each cell’s nucleus, cytoplasm and membrane. These include 
signal intensity values for the chromogen and counterstain (minimum, 
maximum, percentiles, standard deviation and more), and perimeter, 
area, and major and minor axes. The median nuclear-staining intensity 
is also quantified to help infer cell identity; for instance, RBCs lack nuclei 
but retain nuclear counterstain. To avoid duplication from overlapping 
tiles, metadata are only collected from nuclei centroids located within 
the bounds of the original, unextended tile. Metadata from all tile batches 
are then appended to a features table containing information for all 
registered and segmented cells across all stains in the sample.

MARQO also generates a .geojson file containing spatial metadata 
for all segmented nuclei and cytoplasms. Users may choose to use 
MARQO exclusively for registration and segmentation, and then import 
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the raw images and spatial files into external tools such as QuPath to 
classify cells using alternative approaches, such as supervised neural 
networks.

MARQO classification modules. MARQO provides two classification 
options, both using unsupervised learning to cluster all segmented 
and identified cells from the sample into a predefined number of 
unique cell clusters per marker. After either method, users determine 
which clusters contain true-positive or true-negative cells using the 
review GUI. To support this decision, the application overlays cell cen-
troids per cluster onto the raw images and allows visualization of any 
tile the user chooses. Users may also manually select individual cells 
as positive or negative. Once all markers are evaluated, the summary 
table is updated to reflect marker status for each cell. This process can 
be performed per sample or across multiple samples simultaneously.

The first classification option applies principal component analy-
sis to reduce the dimensionality of the features table. Components 
explaining 90% of the variance are used to cluster cells into the desired 
number of clusters via the mini-batch k-means algorithm. This faster 
method supports a reclassify feature within the GUI, allowing users to 
further subdivide clusters they judge to be heterogeneous. Due to its 
speed and dimensionality reduction, this approach is recommended 
for large datasets or those requiring rapid reclustering.

The second option randomly selects 50,000 cells from the features 
table, applies principal component analysis, and then uses uniform 
manifold approximation and projection. The resulting low-dimensional 
projection is clustered using a Gaussian mixed model (GMM), seeded 
by initial centroids. Approximately 60 GMMs are generated per marker 
across batches and then merged into the final cluster count by applying 
k-means clustering to the GMM means of each standardized feature. 
A total of 60 GMMs were empirically determined to best capture the 
variance in our datasets.

Statistics and reproducibility
For each figure panel presented, the number of human tissue samples 
used is indicated in the corresponding figure caption. All immunostain-
ing markers were previously validated and optimized for each specific 
tissue type. Following optimization, staining was performed once per 
sample. Reproducibility was ensured through the inclusion of multiple 
independent samples per experimental condition as biological repli-
cates to support the robustness of the findings.

Human participants
HCC liver samples used for MICSSS and singleplex IHC were obtained 
via a single-arm, open-label, phase 2 trial of patients with HCC with 
resectable tumours (ClinicalTrials.gov, NCT03916627, cohort B). A 
total of 20 patients were enrolled and received 2 cycles of cemiplimab 
before surgical resection, as described in the clinical trial publication, 
including the full protocol provided in the supplementary materials25. 
Core needle biopsies and tumour tissues were obtained from these 
patients undergoing surgical resection at Mount Sinai Hospital, after 
obtaining informed consent in accordance with a protocol reviewed 
and approved by the Institutional Review Board at the Icahn School 
of Medicine at Mount Sinai (IRB 18-00407). Tonsil samples used for 
singleplex IHC were obtained from patients undergoing tonsillecto-
mies, from Leica Biosystems, which purchased FFPE blocks from the 
Deer Park local hospital. NSCLC resection samples used for MICSSS 
and mIF were obtained from treatment-naive patients undergoing 
surgical resection at Mount Sinai Hospital, after obtaining consent 
in accordance with a protocol reviewed and approved by the Institu-
tional Review Board at the Icahn School of Medicine at Mount Sinai 
(IRB 21-01308). The NSCLC, head and neck squamous cell carcinoma, 
colorectal cancer, breast cancer, epithelial ovarian cancer, pancre-
atic ductal adenocarcinoma, glioblastoma, renal cell carcinoma and 
melanoma samples used for the TMA MICSSS analysis were obtained 

by the Cooperative Human Tissue Network in a de-identified fashion 
without the possibility of being linked with metadata. All human data 
were either from properly consented patients or anonymized before 
uploading to our cluster database.

Sample preparation for singleplex IHC, MICSSS and TMA
For MICSSS and singleplex IHC, pretreatment HCC core biopsies 
and post-treatment surgically resected HCC lesions were obtained 
from FFPE blocks. Tissues used to create the TMA were similarly pro-
cessed, and 1.0-mm diameter punches were made. FFPE tissue sec-
tions were sliced at 4 µm. Whole-slide tissue sections were stained 
either by singleplex IHC or by using the MICSSS protocol as previ-
ously described5. The TMA was stained with MICSSS. All slides went 
through an automated immunostainer (Leica Bond RX; Leica Biosys-
tems) that performed baking, chromogenic revelation and nuclear 
counterstaining. For the singleplex IHC, tonsil samples were subjected 
to chromogenic revelation via 3,3′-DAB (Vector Laboratories), and 
tumour samples and all MICSSS samples underwent chromogenic 
revelation via AEC (Vector Laboratories). All IHC assays were coun-
terstained with haematoxylin. Then, all slides were mounted with a 
glycerol-based mounting medium and scanned to obtain digital images 
using an Aperio AT2 scanner and Aperio ImageScope DX visualizer 
software v.12.3.3 (Leica). For MICSSS, after each round of staining 
and scanning, slide coverslips were removed in hot water (~50 °C) 
and tissue sections were bleached. This process was repeated for the 
length of the panel. Primary antibodies are presented in Supplemen-
tary Table 2 for the singleplex IHC, TMA, whole-slide resections and  
biopsies.

Multiplex immunofluorescence staining and imaging  
on COMET
COMET mIF, or automated hyperplex immunofluorescence, staining 
and imaging was performed on the COMET platform (Lunaphore Tech-
nologies). Slides from FFPE blocks were cut at 4 µm and underwent 
10 cycles of iterative staining and imaging, followed by an elution of 
the primary and secondary antibodies9,45. In brief, slides were pre-
processed with PT Module (Epredia) with Dewax and HIER Buffer H 
(TA999-DHBH; Epredia) for 60 min at 102 °C. Subsequently, slides were 
rinsed and stored in Multistaining Buffer (BU06; Lunaphore Technolo-
gies) until use. The 20-plex protocol template was generated using the 
COMET Control Software, and reagents were loaded onto the device 
to perform the sequential immunofluorescence (seqIF) protocol. A 
list of primary antibodies with corresponding dilution and incubation 
times is enclosed in Supplementary Table 3. Secondary antibodies 
were used as a mix of two species-complementary antibodies. The 
nuclear signal was detected with DAPI (1:1,000 dilution; catalogue 
number 62248; Thermo Scientific) after 2 min of dynamic incubation. 
All reagents were diluted in Multistaining Buffer (BU06; Lunaphore 
Technologies). For each cycle, the following exposure times were used: 
50 ms for DAPI, 400 ms for tetramethylrhodamine isothiocyanate 
(TRITC) and 200 ms for Cy5. The elution step lasted 2 min for each 
cycle and was performed with elution buffer (BU07-L; Lunaphore 
Technologies) at 37 °C. The quenching step lasted for 30 s and was 
performed with quenching buffer (BU08-L; Lunaphore Technolo-
gies). The imaging step was performed with imaging buffer (BU09; 
Lunaphore Technologies). The seqIF protocol in COMET resulted in a 
multilayer ‘.ome.tiff’ file, where the imaging outputs from each cycle 
were stitched and aligned. COMET ome.tiff contains a DAPI image, 
intrinsic tissue autofluorescence in the TRITC and Cy5 channels, a 
single fluorescence layer per marker and a single layer per additional 
image post-elution. Antibody titration was optimized to identify the 
best antibody dilution and incubation time. Imaging was performed on 
unstained tissue after each cycle of biomarker staining and antibody 
elution. The images were used to assess the staining quality and the 
elution efficiency for each staining condition.
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Image analysis performed on QuPath
To evaluate MARQO’s performance, we analysed tiles from resected 
tissue images generated by singleplex IHC, COMET mIF and MICSSS 
TMA images using QuPath, a third-party analysis tool commonly used 
in pathology laboratories19. For singleplex IHC and each MICSSS image, 
colour deconvolution was performed to separate stain vectors—haema-
toxylin, AEC or DAB chromogens and a residual channel. Stain vectors 
were estimated from a selected ROI containing balanced positive and 
negative cells, along with a blank area to avoid downsizing artefacts 
that could affect deconvolution quality. This step was not needed for 
COMET mIF .ome.tiff images, where each stain was already assigned 
to a separate channel. Whole-tissue annotations were created using 
QuPath’s ‘simple tissue detection’ to distinguish tissue from back-
ground glass. For TMA images, separate annotations were made for 
each core. Individual cells were identified using StarDist, a pretrained 
nuclear segmentation algorithm that outputs nuclear masks based 
on haematoxylin or DAPI expression and expands these to include 
cytoplasmic and membranous compartments using a user-defined 
diameter. Intensity values for haematoxylin and chromogens, along 
with morphological features, were recorded for nuclear, cytoplasmic 
and total cell compartments.

For each biomarker and dataset, a machine learning classifier 
was trained using intensity and morphological values from manually 
selected positive and negative cells. This classifier was applied to all 
images stained for the same biomarker across the cohort to identify 
positive cells. Due to the heterogeneous nature of the tissue types in 
the TMA, high-level classifiers applied across all cores were sometimes 
insufficient. In such cases, tissue-specific classifiers trained and applied 
within individual tissue types improved identification accuracy. Finally, 
cell marker density data, calculated as the number of positive cells per 
total tissue area, were exported7.

Manual cell counting for validation
We compared MARQO’s nuclear segmentation performance to that 
of a trained pathologist manually selecting individual cells. A pathol-
ogist selected 15 post-registered tiles (1,000 pixels × 1,000 pixels, 
~500 µm × 500 µm) from FOXP3-stained images in the human HCC 
cohort. FOXP3 stains were chosen due to minimal AEC interference 
with the haematoxylin counterstain. Tiles represented diverse tissue 
architectures and cell densities. Using QuPath, the pathologist created 
a ‘Cell’ class and used the ‘Points’ tool to click within each nucleus, 
generating cell count and coordinate data, which were exported as 
individual .geojson files. We then compared these with MARQO’s 
output using a point-in-polygon strategy. Manually selected points 
inside MARQO-segmented nuclear boundaries were labelled ‘MARQO+, 
manual+’, with matched cells removed from further analysis. Remaining 
points outside any segmentation were labelled ‘MARQO−, manual+’, 
and unmatched MARQO cells were labelled ‘MARQO+, manual−’.

Of the 15 tiles, 5 included large numbers of RBCs to test MARQO’s 
RBC filtering. The pathologist marked all perceived RBCs using the 
Points tool in QuPath. Points inside MARQO’s nuclear boundaries  
were classified as ‘miss’, while those outside were ‘hit’, indicating suc-
cessful filtering.

For classification validation, 34 post-registered tiles (1,000 
pixels × 1,000 pixels) were selected across various stains and tissue 
types, including tumour-adjacent and HCC tissues, and markers CD3, 
FOXP3, CD68 and PanCK. These tiles also varied in tissue architec-
ture and cell density. The pathologist created a ‘positive’ class and 
clicked points within nuclei of cells deemed positive, exporting the 
metadata as .geojson files. We again applied the point-in-polygon 
strategy. Points inside MARQO-identified positive nuclei were labelled 
‘MARQO+, manual+’. Positive MARQO cells without matching points 
were ‘MARQO+, manual−’, and negative MARQO cells without any 
clicked points were ‘MARQO−, manual−’. Negative MARQO cells with 
a clicked point were labelled ‘MARQO−, manual+’. Manually selected 

points outside any segmented cell boundary were excluded from  
analysis.

Imaging proximity analysis
Using the features table, we extracted the centroid coordinates of 
all cells and stratified them by marker combination patterns and 
localization within annotated tissues. For each cell in population A, 
we computed the distance to the nearest neighbour in population B. 
From the resulting distribution of minimal distances, we computed a  
Gaussian kernel density estimation curve and estimated the mode. This 
process was repeated for all possible pairs between cell types A and B 
for each patient sample, stratified per region of interest. Finally, we 
plotted the distribution of modes from the CD8 T cell perspective to 
themselves, B cells and Treg cells across tissue regions. This analysis will 
be available as a review module in a future deployment of the pipeline.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Image files are available upon request from the corresponding author. 
Patient co-expression and cell type data are provided in Supplementary 
Table 4.

Code availability
A container with MARQO’s GUI to analyse samples locally is available at 
https://github.com/igorafsouza/MARQO. All source code is available 
from the corresponding author upon reasonable request46. Requests 
for service to run larger samples on a cluster should be made by con-
tacting the corresponding author.
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