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ABSTRACT
Purpose SWOG S1609 Dual Anti- CTLA- 4 and anti- PD- 1 
blockade in Rare Tumors (DART) studied the efficacy of 
ipilimumab combined with nivolumab across multiple 
rare tumor types. We report the results of the pancreatic 
neuroendocrine neoplasm (PNEN) cohort.
Experimental design Treatment consisted of ipilimumab 
1 mg/kg intravenously every 6 weeks with nivolumab 
240 mg intravenously every 2 weeks. The primary endpoint 
was overall response rate (ORR) (Response Evaluation 
Criteria In Solid TumorsRECIST V.1.1). Secondary endpoints 
include progression- free survival (PFS), overall survival 
(OS), and toxicity. Clinical benefit rate (includes ORR plus 
stable disease (SD)>6 months was examined. Correlative 
studies were performed. The trial was conducted by the 
National Cancer Institute/Southwest Oncology Group Early 
Therapeutics and Rare Cancers Committee and opened at 
>1,000 sites.
Results 19 patients with PNEN were enrolled. The 
median number of lines of prior therapy was 2 (range: 
0–4). The ORR was 11% (2/19 patients); the clinical 
benefit rate (CBR; stable disease >6 months+partial 
response+complete response), 26% (5/19). The median 
PFS was 3 months; median OS, 24 months. The longest 
PFSs were 26 (intermediate grade PNEN), 31 (low grade) 
and 39+months (intermediate grade). The most common 
toxicities were fatigue (47% of patients) and aspartate 
aminotransferase (AST) elevation (32%); the most 
common grade 3/4 immune- related adverse event (AE) 
was AST (32%) and bilirubin elevation (26%), with no 
grade 5 events. Programmed death- ligand 1 expression 
by chromogenic immunohistochemistry (N=12 patients 
assessed) did not associate with ORR; tumor mutation 
burden (TMB) was high in three patients; one of the two 
patients with partial remission (PFS=26 months) had high 

TMB (150 mutations/mb). Peripheral effector memory 
T- cell activation (N=11 patients assessed by cytometry 
by time- of- flight with 5 having longitudinal analysis) was 
associated with response, though the number of patients 
evaluated was limited.
Conclusions Low- dose ipilimumab plus nivolumab 
demonstrated an 11% ORR and 26% CBR (includes SD>6 
months) in patients with refractory PNEN, with durable 
benefit (>2 years) in 3 (16%) patients.
Trial registration number NCT02834013.

INTRODUCTION
Immune checkpoint blockade has had a 
dramatic effect on improving outcomes 
across multiple cancer types, including in 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Pancreatic neuroendocrine neoplasms are rare tu-
mors with low response rates to anti- programmed 
cell death protein- 1 immunotherapy

WHAT THIS STUDY ADDS
 ⇒ Nivolumab combined with low- dose ipilimumab 
demonstrated a clinical benefit rate (includes sta-
ble disease >6 months plus objective response) of 
26% with durable benefit lasting >2 years in 3 of 
19 patients.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ These results suggest that dual immunotherapy may 
be useful for a subset of patients with this rare can-
cer and that additional investigations are warranted.
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rare tumors such as anal cancer and Merkel cell carci-
noma.1 2 Less is known about the benefit of anti- cytotoxic 
T- lymphocyte associated protein 4 (CTLA- 4) and anti- 
programmed cell death protein- 1 (PD- 1) approaches in 
other rare cancers. SWOG 1609 DART (Dual Anti- CTLA- 4 
and anti- PD- 1 blockade in Rare Tumors), a federally 
(National Cancer Institute (NCI)) funded basket immu-
notherapy study investigating ipilimumab with nivolumab 
in rare cancers was launched to address this unmet 
medical need. The trial investigated low- dose ipilimumab 
and regular- dose nivolumab across 53 rare tumor types 
(though one cohort received nivolumab alone), with 
signals of efficacy in multiple histologies including but 
not limited to angiosarcoma, anaplastic thyroid cancer, 
small bowel carcinoma, and metaplastic breast cancer.3–7

We have also previously reported S1609 results across 
all grades of non- pancreatic neuroendocrine neoplasms 
(PNEN), with a 44% overall response rate (ORR) in 
patients with high- grade disease, versus a 0% ORR in 
patients with lower- grade tumors.8 A separate, prospec-
tive high- grade neuroendocrine neoplasm cohort was 
launched within S1609 showing a 26% ORR overall, 
including one of two patients with poorly- differentiated, 
high- grade pancreatic neuroendocrine cancer with a 
complete remission lasting over 3 years.9

We report here the results of a distinct cohort of PNEN 
across grade and differentiation, including higher- grade 
pancreatic neuroendocrine carcinoma and pancreatic 
neuroendocrine tumors (PNETs).

PATIENTS AND METHODS
The trial was conducted by the Early Therapeutics and 
Rare Cancers Committee of Southwest Oncology Group 
(SWOG), and the investigational agents were provided 
by the Cancer Therapy Evaluation Program of the NCI 
under an NCI Cooperative Research and Development 
Agreement (CRADA) agreement with Bristol- Myers 
Squibb. The protocol and all amendments were approved 
by SWOG, the NCI, the NCI Central Institutional Review 
Board, and by the regulatory committees at the partici-
pating institutions ( ClinicalTrials. gov NCT02834013). All 
study subjects provided their voluntary, written informed 
consent, and the study was conducted in accordance with 
the Declaration of Helsinki.

Rationale for population
Rare cancers for S1609 were selected based on a reported 
incidence of less than 6 in 100,000 per year.10 Local 
pathology review was used, with pathology report review 
by the SWOG study team. PNEN grading was based on 
2019 WHO criteria.

Patient selection
Patients were required to be >18 years of age, have an 
Eastern Cooperative Oncology Group (ECOG)/Zubrod 
performance status of 0–2, with absolute neutrophil 
count ≥1 x 10ˆ9/L, platelets ≥75,000/mcL, hemoglobin ≥ 

80 g/L, creatinine clearance ≥50 mL/min, total bilirubin 
≤2.0×institutional upper limit of normal (IULN), aspar-
tate aminotransferase (AST) and alanine aminotrans-
ferase (ALT)≤3.0×IULN, TSH or free T4 serum ≤IULN, 
and adrenocorticotropic hormone (ACTH)≤IULN. 
Women of childbearing potential were required to 
have a negative serum pregnancy test, and participants 
were required to practice adequate birth control during 
protocol participation.

Tumor grade and differentiation were based on local 
pathology and the WHO 2019 classification and grading 
of PNEN was used at the time of study accrual. Individual 
characteristics are summarized in table 1.

Treatment and monitoring
Treatment consisted of ipilimumab 1 mg/kg intravenously 
every 6 weeks with nivolumab 240 mg intravenously every 
2 weeks until disease progression, symptomatic deteriora-
tion, treatment delay for any reason >56 days, unaccept-
able or immune- related toxicity with inability to decrease 
prednisone to <10 mg daily, or per patient request.

Patients were evaluated with a history and physical, 
and toxicity assessment at least every 6 weeks with the 
beginning of each cycle. Laboratory evaluation included 
complete blood count, comprehensive metabolic panel, 
thyroid stimulating hormone, free thyroxine, ACTH, 
cortisol, lipase. Imaging studies by CT for disease assess-
ment were performed pre- study, week 8, week 16, week 
24, and then every 12 weeks until progression.

Table 1 Patient characteristics (median (minimum, 
maximum) or N (%) reported; N=19 patients)

Factor Summary, n=19

Age (years) 62 (18–75)

Performance status

  0 8 (42)

  1 11 (58)

Ethnicity

  Hispanic 0

  Not Hispanic 19 (100)

Race

  Black 1 (5)

  White 18 (95)

Grade

  High 5 (26)

  Intermediate 7 (37)

  Low 4 (21)

  Not reported 3 (16)

Differentiation

  Poorly differentiated 2 (11)

  Well- differentiated 8 (42)

  Not reported 9 (47)

Number of prior regimens 2 (0, 4)
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Statistical methods and outcomes
The primary objective was to evaluate the ORR (confirmed 
complete and partial responses (CR and PR)) by Response 
Evaluation Criteria In Solid Tumors (RECIST) V.1.1 
based on local RECIST assessment. A two- stage design 
was used to evaluate a true ORR≤5% (null hypothesis, 
as patients had failed all known active therapies) versus 
≥30% (alternative hypothesis, a potentially clinically 
meaningful difference in tumor response in refractory 
solid tumors). The first stage sample size was 6 patients; if 
>1 had a response (confirmed CR or PR), an additional 
10 patients were to be accrued. The design specified that 
2 or more responses out of 16 patients would reject the 
null hypothesis (one- sided alpha=13%, power=87%). The 
secondary objectives were to estimate progression- free 
survival (PFS), overall survival (OS), ORR by immune- 
related RECIST (iRECIST), PFS by iRECIST, and toxicity 
assessment by Common Terminology Criteria for Adverse 
Events (CTCAE) V.4.0. We also assessed the clinical 
benefit rate (CBR) (stable disease (SD)>6 months/PR/
CR).

PFS was measured from the start of protocol therapy 
to the first date of progression by RECIST V.1.1 or death 
by any cause, with patients last known to be alive without 
progression censored at the date of last contact. OS was 
measured from the date of study registration to the date 
of death by any cause, with patients last known to be alive 
censored at the date of last contact. PFS and OS estimates 
were calculated using the Kaplan- Meier method. CIs for 
medians were constructed using the method of Brook-
meyer and Crowley.11 CIs for the primary ORR analysis 
accounted for the two- stage design and observed sample 
size.12 All analyses were performed using R V.4.2.1.

Translational analyses
Samples for translational analysis
RNA and DNA were extracted from archival or base-
line paraffin tumor tissue provided by the SWOG bank, 
along with slides cut from the same block for image anal-
ysis. Peripheral blood mononuclear cells (PBMCs) and 
plasma were provided by the SWOG bank and assessed 
longitudinally at baseline, cycle 2 week 9 (C2W9) and at 
progression. The number of samples available for analysis 
is shown in online supplemental figure 1.

NanoString gene expression assay
RNA extracted from baseline formalin- fixed paraffin- 
embedded (FFPE) samples enrolled in the S1609 trial 
was received from the SWOG bank (n=7). Samples 
were run on the nCounter platform using the nCounter 
PanCancer Immune Profiling panel (730 immune- related 
and 40 housekeeping genes) (https://nanostring.com/ 
products/ncounter-assays-panels/oncology/pancancer- 
immune-profiling)/( per manufacturer’s instructions). 
Briefly, samples were hybridized overnight at 65°C to 
probes, excess probes were washed using the automated 
prep station and then imaged on the digital analyzer. All 
runs included a Human Reference RNA control for batch 

correction. Data were processed and normalized with 
NanoString’s nSolver analysis software. All samples passed 
the post- run QC metrics and no batch effects were evident 
in the runs. B- cell scores were derived using TIMER.

Whole-exome sequencing data analysis
Whole- exome sequencing (WES) analysis was conducted 
using the CIDC WES pipeline on tumor DNA from nine 
tumors that passed quality control. DNA from paired 
peripheral blood mononuclear samples was used as a 
germ line control (n=4). WES implements Gene Analysis 
Toolkit13 best practices and identifies somatic variants 
using Sentieon TNScope and Haplotyper algorithms,14 
respectively. Somatic variants are annotated using the 
Variant Effect Predictor software.15 The pipeline uses 
an ensemble of three callers, CNVkit,16 Sequenza,17 and 
Facets,18 to characterize tumor copy number variation 
(CNV), and the CNV segments called by at least two 
callers were used to generate a high- confident consensus 
set. Sequenza and FACETS were used to estimate tumor 
purity and also PyClone- VI was used to infer clonal status 
of mutations.19 PyClone V.0.13.120 was used to perform 
mutation clonality analysis. It is a Bayesian clustering 
method that enables mutations to be grouped into puta-
tive clonal clusters by integrating copy number, tumor 
purity (obtained from Sequenza), and variant allele 
frequency data.

Immunohistochemistry for PD-L1
Immunohistochemistry (IHC) was used to assess the 
expression of programmed death- ligand 1 (PD- L1) in 
tumor tissue (n=12). The optimal conditions were previ-
ously validated.21 We used the Leica Bond Max autostainer 
system (Leica Biosystems) with standard Leica protocol, 
which is briefly described here: FFPE tissue sections were 
deparaffinized and rehydrated; then, antigen retrieval 
was performed with Bond ER2 (Leica Biosystems, pH 
9.0 Cat# AR9640) for 20 min; the primary antibody (PD- 
L1; clone 28–8, dilution 1:100; Abcam) was incubated 
for 15 min at room temperature and detected using the 
Bond Polymer Refine Detection kit (Leica Biosystems) 
with 3,3′-diaminobenzidine as the chromogen; finally, the 
slides were counterstained with hematoxylin, dehydrated 
and cover- slipped. Positive (placenta) and negative 
(diluent) controls were used in each run. Two patholo-
gists assessed PD- L1 staining expression in the membrane 
of viable malignant cells and reported the percentage 
of malignant cells with any positive PD- L1 membrane 
staining (Tumor Proportion Score). For this purpose, 
samples were considered adequate for IHC evaluation if 
they contained ≥100 viable tumor cells.

Multiplex immunofluorescence staining and analysis
Multiplex immunofluorescence (mIF) staining (n=12) 
was performed using similar methods and reagents previ-
ously described and validated.22 Briefly, sequential 4 
µm- thick FFPE tumor sections were stained using an auto-
mated staining system (BOND- RX; Leica Microsystems, 

https://dx.doi.org/10.1136/jitc-2025-011760
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https://nanostring.com/products/ncounter-assays-panels/oncology/pancancer-immune-profiling/
https://nanostring.com/products/ncounter-assays-panels/oncology/pancancer-immune-profiling/
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Buffalo Grove, Illinois, USA) placed in two mIF panel 
contained: Panel 1, cytokeratin (clone AE1/AE3, cat# 
M351501- 2, dilution 1:300, Dako, Santa Clara, California, 
USA), PD- L1 (clone E1L3N, cat# 13684S, dilution 1:3,000, 
Cell Signaling Technology, Danvers, Massachusetts, 
USA), CD68 (clone PG- M1, cat# M087601- 2, dilution 
1:450, Dako), CD3 (polyclonal, cat#IS503, dilution 1:100, 
Dako), CD8 (clone C8/144B, cat# MS- 457- S, dilution 
1:300, Thermo Fisher Scientific, Waltham, Massachusetts, 
USA), and PD- 1 (clone EPR4877- 2, cat# ab137132, dilu-
tion 1:250, Abcam, Cambridge, Massachusetts, USA) and 
Panel 2: cytokeratin (clone AE1/AE3, cat# M351501- 2, 
dilution 1:300, Dako), CD3 (polyclonal, cat#IS503, dilu-
tion 1:100, Dako), CD8 (clone C8/144B, cat# MS- 457- S, 
dilution 1:300, Thermo Fisher Scientific), CD45RO 
(clone UCHL1, cat# PA0146, Cell Signaling Technology), 
granzyme B (clone 11F1, cat # PA0291, Cell Signaling 
Technology), and FOXP3 (clone D2W8E, cat# 98377S, 
Cell Signaling Technology). All the markers were stained 
in sequence using their respective fluorophore contained 
in the Opal 7 kit (catalog #NEL797001KT; Akoya Biosci-
ences, Waltham, Massachusetts, USA). Antibody clones 
and dilutions are the same as were used recently and 
described.22 All markers were sequentially applied and 
stained using their respective fluorophores in the Opal 7 
kit (catalog #NEL797001KT; Akoya Biosciences, Waltham, 
Massachusetts, USA). The slides were scanned using the 
Vectra/Polaris V.3.0.3 (Akoya Biosciences) at low magnifi-
cation, 10× (1.0 µm/pixel) through the full emission spec-
trum and positive tonsil controls from the run staining 
to calibrate the spectral image scanner protocol.23 A 
pathologist selected representative areas inside the 
tumor using regions of interest for scanning in high 
magnification by the Phenochart Software image viewer 
V.1.0.12 (931×698 µm size at resolution 20×) to capture 
various elements of tissue heterogeneity. Marker colocal-
ization was employed to identify the following cellular 
subsets: malignant cells (AE1/AE3+); PD- L1- expressing 
malignant cells (AE1/AE3+PD- L1+); T cells (CD3+); 
cytotoxic T cells (CD3+CD8+); antigen- experienced T 
cells (CD3+PD- 1+); antigen- experienced cytotoxic T 
cells (CD3+CD8+PD- 1+); macrophages (CD68+); PD- L1- 
expressing macrophages (CD68+PD- L1+); cytotoxic 
activated T cells (CD3+CD8+granzyme B+); effector/
memory cytotoxic T cells (CD3+CD8+CD45RO+); and 
regulatory T cells (CD3+CD8−FOXP3+). Densities of 
each cell phenotype were quantified as the number of 
cells/mm2 in tumor nests and tumor stroma. Malignant 
cells expressing PD- L1 were also expressed in percent-
ages. Data were consolidated using the RStudio V.3.5.3 
(Phenopter V.0.2.2 packet, Akoya Biosciences).

CyTOF staining of PBMCs
Cytometry by time- of- flight (CyTOF) is a technology that 
measures the abundance of metal isotope labels on anti-
bodies and other tags (such as peptide- major histocom-
patibility complex (MHC) tetramers for labeling specific 
T cells) on single cells using mass spectroscopy. CyTOF 

Intracellular Cytokine Staining (ICS) was performed as 
previously described by Subrahmanyam and Maecker on 
samples from 11 patients collected longitudinally.24 Briefly, 
frozen PBMCs were thawed and washed two times in 
complete medium (Roswell Park Memorial Institute RPMI 
medium supplemented with Pen- Strep and L- glutamine). 
Cell counts were obtained using a Vi- Cell XR cell viability 
analyzer (Beckman Coulter, Brea, California, USA). 2×106 
cells per sample were plated in 96- well U- bottom plates. 
Veri- Cells tagged with 181Ta were reconstituted according 
to manufacturer’s instructions (BioLegend) and spiked 
in each sample to a ratio of 1:10. All the samples were 
rested overnight at 37°C, 5% CO2. After resting, secretion 
inhibitors brefeldin A (5 µg/mL) and monensin (5 µg/
mL) (Millipore- Sigma, St. Louis, Missouri, USA) were 
added along with 10 ng/mL phorbol myristic acetate and 
1 µg/mL ionomycin (Millipore- Sigma) and anti- CD107a 
conjugated with 151Eu. All samples were incubated for 
4 hours at 37°C. After washes, cells were stained for dead 
cell discrimination with Cell- ID 103Rh (Fluidigm, South 
San Francisco, USA) for 15 min at 37°C. Then, we stained 
the cells for barcoding with combinations of three anti- 
CD45 antibodies conjugated to 113In, 115In, 194Pt, 
195Pt, 196Pt and 198Pt for 30 min, at room tempera-
ture. After washing and pooling the cells, we proceeded 
to the surface staining for 30 min at room temperature 
prior to fixation with eBioscience Foxp3/Transcription 
Factor Fixation concentrate (Thermo Fischer Scientific, 
Waltham, USA) overnight at 4°C. The next day, cells 
were permeabilized with eBioscience Perm Buffer and 
intracellular proteins were stained for 1 hour at room 
temperature. The complete antibody panel is described 
in online supplemental table 1; the surface antibody 
cocktail was prepared in advance and kept lyophilized at 
−20°C. Finally, cells were stained using Cell- ID Intercala-
tor- Ir (Fluidigm) in 1× phosphate buffered saline (Rock-
land Immunochemicals, Pottstown, Pennsylvania, USA) + 
2% paraformaldehyde (PFA, Alfa- Aesar, Thermo Fischer) 
and kept at 4°C up to 3 days. Prior to CyTOF acquisi-
tion, cells were washed two times with staining buffer, 
three times with milliQ water and resuspended with 1× 
EQ Four Element Calibration Beads (Fluidigm). After 
CyTOF acquisition, the data collected were normalized 
using the Nolan Lab normalizer (https://github.com/ 
nolanlab/bead-normalization/releases), deconvoluted 
with the Zunder Lab Single Cell Debarcoder (https:// 
github.com/zunderlab/single-cell-debarcoder) and then 
analyzed with Cytobank (https://cytobank.org/).

Olink soluble analyte assay
We performed circulating plasma analyte measurements 
using proximity extension assay (Olink) in plasma samples 
from 11 patients collected longitudinally. A series of 92 
proteins, such as cytokines and soluble immune check-
points included in the “immuno- oncology” panel, were 
measured as previously described, according to manufac-
turer’s instructions.25 Protein levels were normalized with 
the use of internal controls and quantified as log2 protein 

https://dx.doi.org/10.1136/jitc-2025-011760
https://github.com/nolanlab/bead-normalization/releases
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Table 2 Adverse events at least possibly related to treatment (n=19 patients)

Any grade Grade 3–4 Grade 5

Any 17 (89.5%) 9 (47.4%) 0 (0.0%)

Serious 7 (36.8%) 6 (31.6%) 0 (0.0%)

Led to discontinuation 1 (5.3%) 0 (0.0%) 0 (0.0%)

Lead to death 0 (0.0%) 0 (0.0%)

>10% of patients

  Fatigue 9 (47.4%) 0 (0%) 0 (0.0%)

  Aspartate aminotransferase increased 6 (31.6%) 1 (5.3%) 0 (0.0%)

  Blood bilirubin increased 5 (26.3%) 2 (10.5%) 0 (0.0%)

  Diarrhea 5 (26.3%) 2 (10.5%) 0 (0.0%)

  Rash maculopapular 5 (26.3%) 0 (0%) 0 (0.0%)

  Alanine aminotransferase increased 4 (21.1%) 1 (5.3%) 0 (0.0%)

  Pruritus 4 (21.1%) 1 (5.3%) 0 (0.0%)

  Nausea 4 (21.1%) 0 (0%) 0 (0.0%)

  Alkaline phosphatase increased 3 (15.8%) 1 (5.3%) 0 (0.0%)

  Anorexia 3 (15.8%) 1 (5.3%) 0 (0.0%)

  Hypothyroidism 3 (15.8%) 1 (5.3%) 0 (0.0%)

  Anemia 3 (15.8%) 0 (0%) 0 (0.0%)

  Arthralgia 3 (15.8%) 0 (0%) 0 (0.0%)

  Lipase increased 2 (10.5%) 2 (10.5%) 0 (0.0%)

  Adrenal insufficiency 2 (10.5%) 1 (5.3%) 0 (0.0%)

  Hyperglycemia 2 (10.5%) 1 (5.3%) 0 (0.0%)

  Hypokalemia 2 (10.5%) 1 (5.3%) 0 (0.0%)

  Serum amylase increased 2 (10.5%) 1 (5.3%) 0 (0.0%)

  Dry skin 2 (10.5%) 0 (0%) 0 (0.0%)

  Headache 2 (10.5%) 0 (0%) 0 (0.0%)

  Hypotension 2 (10.5%) 0 (0%) 0 (0.0%)

  Pain in extremity 2 (10.5%) 0 (0%) 0 (0.0%)

  Vomiting 2 (10.5%) 0 (0%) 0 (0.0%)

  Weight loss 2 (10.5%) 0 (0%) 0 (0.0%)

Immune- mediated 14 (73.7%) 7 (36.8%) 0 (0.0%)

  Aspartate aminotransferase increased 6 (31.6%) 1 (5.3%) 0 (0.0%)

  Blood bilirubin increased 5 (26.3%) 2 (10.5%) 0 (0.0%)

  Diarrhea 5 (26.3%) 2 (10.5%) 0 (0.0%)

  Rash maculopapular 5 (26.3%) 0 (0%) 0 (0.0%)

  Alanine aminotransferase increased 4 (21.1%) 1 (5.3%) 0 (0.0%)

  Pruritus 4 (21.1%) 1 (5.3%) 0 (0.0%)

  Hypothyroidism 3 (15.8%) 1 (5.3%) 0 (0.0%)

  Arthralgia 3 (15.8%) 0 (0%) 0 (0.0%)

  Lipase increased 2 (10.5%) 2 (10.5%) 0 (0.0%)

  Adrenal insufficiency 2 (10.5%) 1 (5.3%) 0 (0.0%)

  Serum amylase increased 2 (10.5%) 1 (5.3%) 0 (0.0%)

  Hyperthyroidism 1 (5.3%) 1 (5.3%) 0 (0.0%)

  Infusion- related reaction 1 (5.3%) 0 (0%) 0 (0.0%)

  Pneumonitis 1 (5.3%) 0 (0%) 0 (0.0%)
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expression (“NPX”), which were then used as input for 
downstream analysis.

Differential expression multivariate analysis
To investigate the longitudinal changes in plasma protein 
changes associated with treatment, we used the following 
time points: baseline, C2W9, and progression. To care-
fully quantify the effect of these variables and additional 
relevant clinical parameters, we used mixed linear models 
(R package Dream and mle426 27) to model the variances 
of each covariate. This approach quantifies the effect of 
covariates such as phase, time points, or treatment, and 
allows performing comparisons between multiple cate-
gories. Each protein Normalized Protein Expression 
(NPX) value in the Olink assay is considered as an inde-
pendent variable while phase, time points and treatments 
are considered as dependent variables. Additionally, 
this method enables the estimation of multiple random 
effects, allows the variance terms to vary across proteins, 

and approximate df of hypothesis test for each protein, 
thereby minimizing false positive results.

Thresholds
To correct for multiple hypothesis testing, we used false 
discovery rate (FDR) as the preferred method. The 
thresholds for significance in the mixed linear models for 
differential expression tests were a log2 fold change of at 
least 0.5 and an FDR<0.05. The joint model’s threshold 
for significance was at least one unit increase in log2 NPX 
expression and FDR<0.05.

Statistical analysis of translational studies
To evaluate if the baseline biomarkers are prognostically 
associated with survival, we dichotomized biomarker data 
by median and performed survival analysis with the log- 
rank test. To assess if continuous biomarker data are asso-
ciated with response and other clinical variables, we use 
non- parametric tests: (1) biomarker versus continuous 
variable: the Spearman rank correlation; (2) biomarker 
versus categorical variable with two groups: Mann- 
Whitney U test; (3) biomarker versus categorical vari-
able with more than two groups: Kruskal- Wallis test. For 
robust assessment, we also dichotomized biomarker data 
and used χ2 test for response analysis. BH (Benjamini and 
Hochbert) method was used for multiple- testing adjust-
ment of p values.

RESULTS
Patient characteristics
19 patients from 12 National Clinical Trials Network 
institutions were registered between January 2018 and 
October 2019 and received protocol therapy, as summa-
rized in table 1. Translational analyses were completed in 
2024 and data cut- off as of January 21, 2023. The patients 
in this cohort are distinct from those in the previously 
reported cohort.8 9 The median age was 62 years (range 
18–75). Overall, 47% of patients in this cohort were 
female. Performance status was 0 for 42% of patients, and 
58% of patients had an ECOG performance status of 1. 
The median number of prior lines of therapy was 2. High- 
grade (grade 3) tumors represented 26% of PNENs in this 
cohort (N=5 of 19 patients), with 37% being intermediate 
grade (grade 2), 21% low- grade (grade 1), and with 16% 

Table 3 Best response summary by RECIST V.1.1 (n=19)

Best RECIST response Response category, N (%)

Confirmed partial response 2 (11)

Stable disease ≥6 months 3 (16)

Stable disease <6 months 4 (21)

Symptomatic deterioration 1 (5)

Progression 8 (42)

Not assessed 1 (5)

Figure 1 Waterfall plot of tumor measurements. 
Gray lines at −30% and 20% indicate lines for partial 
response and progression per RECIST V.1.1, respectively. 
Crosshatch- indicated tumor measurements not available 
due to: progression due to new lesions at first assessment 
(n=3), death before assessment (n=1), and symptomatic 
deterioration (n=2).

Figure 2 RECIST V.1.1 progression- free survival and overall 
survival.
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of patients with unknown grade. Poorly differentiated 
tumors represented 10% of patients in this cohort, with 
42% well- differentiated and the remainder not reported.

Toxicities
AEs are summarized in table 2, with 89.5% of patients 
experiencing an AE on study and~47% developing a 
grade 3–4 AE (at least possibly therapy related). There 
were no grade 5 toxicities reported. The most common 
toxicities of any grade were fatigue (47%) and AST eleva-
tion (32%). The most common immune- mediated toxicity 
was AST elevation (32%). The most common grade 3/4 
AEs were AST elevation, lipase, and total bilirubin eleva-
tion (all 11%). The most common immune- related AE 
was rash (26%), followed by hypothyroidism (16%). No 
patients discontinued study therapy due to toxicities.

Clinical outcomes
Among the 19 patients, the ORR was 11% (2 of 19 patients) 
(95% CI 5% to 40%) and the CBR (SD>6 months+PR+CR) 
was 26% (5 of 19 patients) (95% CI 16% to 62%) (table 3, 
figure 1). The median PFS was 3 months (95% CI 2 to 
26 months) and median overall survival was 24 months 
(95% CI 6 to ∞ months) (figure 2). Duration of PFS is 
shown in figure 3, demonstrating durable PFS in some 
patients with metastatic disease, including in patients 
with low and intermediate- grade disease; three patients 
(~16%) have PFS of over 24 months (see also online 
supplemental table 2). Two patients with a response 
received treatment for more than 2 years. We also assessed 
patients with iRECIST, with no reclassification from their 
RECIST V.1.1 response.

Analysis of the baseline tumor immune microenvironment
We first investigated the potential relationship between 
baseline PD- L1 expression, tumor mutation burden and 

immune infiltration to determine if there was an associa-
tion with response or survival. Overall, PD- L1 expression 
was low with only 1 case out of 12 assessed having appre-
ciable staining above 1% as assessed by a pathologist 
(figure 4A). The patient with PD- L1 expression had a best 
response of progressive disease (PD); given the limited 
number of PD- L1- expressing neoplasms detected in the 
cohort, the ability to correlate PD- L1 expression with OS 
or PFS was limited. We further interrogated potential 
immune infiltration using mIF staining and gene expres-
sion profiling. Detection of malignant cells (MC; CK+), 
as dichotomized by the median counts/mm2, was less 
in patients with clinical benefit (CR+PR+SD>6 months) 
(online supplemental figure 2A; n=3). Neither the pres-
ence of multiple T- cell subsets (CD3+TIL, CD3+CD8+ 
CTLs, CD3+CD8- FoxP3+Tregs), macrophages (CD68+) 
nor expression of PD- 1 or PD- L1 by tumor infiltrating 
lymphocytes (TILs) or cytotoxic T lymphocytes (CTLs) 
was associated with response (online supplemental figure 
2A). Given the recent findings across multiple tumor 
types associating B cells with response to immunotherapy 
approaches, we used gene expression profiling to esti-
mate the frequency of B cells within the tumor immune 
microenvironment. Stratification of cell scores by median 
did not show any association with best overall response 
or clinical benefit (online supplemental figure 2B). Of 
note, neutrophil cell scores were higher in four out of 
six patients who did not achieve clinical benefit. However, 
this analysis is limited as only one patient who achieved 
clinical benefit was able to be assessed using gene 
expression profiling. Interestingly, WES showed three 
out of four cases having a high tumor mutation burden 
(TMB≥10 mutations/mB) and mutations in MHC class 
II (HLA- DQB1) (figure 4B). High TMB could associate 
with potential differences in immune infiltration prior 

Figure 3 Swimmer plot (n=19) (see also online supplemental table 2).

https://dx.doi.org/10.1136/jitc-2025-011760
https://dx.doi.org/10.1136/jitc-2025-011760
https://dx.doi.org/10.1136/jitc-2025-011760
https://dx.doi.org/10.1136/jitc-2025-011760
https://dx.doi.org/10.1136/jitc-2025-011760
https://dx.doi.org/10.1136/jitc-2025-011760
https://dx.doi.org/10.1136/jitc-2025-011760
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to therapy; however, analysis of multiple immune cell 
types assessed by mIF showed no association with specific 
immune populations in the TMB- high tumors. Tumors 
showed a paucity of T cell and myeloid immune infiltra-
tion (figure 4C). Of the two patients who achieved a PR 
on study, one had a high TMB; examined another way, 
one of three patients with a high TMB achieved an objec-
tive response (online supplemental table 2). Overall, 
while this analysis of the tumor did not reveal any direct 

correlations with patient benefit, there may be a lack of 
PD- 1/PD- L1 engagement given the absence of PD- L1 
expression and a paucity of immune infiltration in the 
TMB- high cases.

Combination therapy induces changes in T-cell states and 
soluble factors early on-treatment in circulation
We next interrogated the circulating immune response to 
determine if immune activation by C2W9 may associate 

Figure 4 PD- L1 expression, genomic analysis and immune infiltration in analyzed cohort. PD- L1 expression as detected by 
chromogenic IHC stratified by (A) best overall response (n=12). (B) Genomic features and TMB (n=4). The orange line indicates 
10 mutations per mB. (C) representative mIF staining of two panels in patient 1 (left) and heatmap of cell types detected 
by multiplex immunofluorescence including clinical features and TMB (n=4) (right). CR, complete response; CTL, cytotoxic 
T lymphocyte; IHC, immunohistochemistry; mB, megaBase; MC, malignant cell; mIF, multiplex immunofluorescence; PD, 
progressive disease; PD- 1, programmed cell death protein- 1; PD- L1, programmed death- ligand 1; PR, partial response; SD, 
stable disease; TIL, tumor infiltrating lymphocyte; TMB, tumor mutational burden; Treg, regulatory T cell.

https://dx.doi.org/10.1136/jitc-2025-011760
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with patient benefit. Analysis of soluble protein changes 
using Olink was limited to change induced by the combi-
nation therapy as all patients except one had a best 
overall response (BOR) of PD. As expected, soluble PD- 1 
(PDCD1) increased post- treatment at both C2W9 and 
progression time points (online supplemental figure 
3). The majority of significant protein changes detected 
were relative to baseline only and levels were maintained 
between C2W9 and progression, with PDCD1 having the 
highest induction post-treatment. However, an increase 
in unique suppressive yet pleiotropic factors such as inter-
leukin- 10, carbonic anhydrase IX and heme oxygenase- 1 
was also observed. These factors have been shown to 
correlate with disease progression, hypoxia and resistance 
to immunotherapy- based approaches.28–32 Circulating 
cell lineage changes and activation states were assessed 
using CyTOF at the same time points described above 
for soluble protein analysis. Statistical changes could not 
be assessed relative to response as only two patients with 
samples available for analysis showed benefit to therapy 
(one PR and one SD>6 months) and the total number 
of patients was limited. Overall, the frequency of T- cell 

subsets (total CD3+, CD4+T cells, CD8+T cells, and Tregs), 
natural killer cells, B cells, and myeloid cells exhibited 
patient- specific changes over time, with two out of three 
PD patients showing a decrease in T- cell subsets including 
Tregs by C2W9 and the PR patient showing a reduction 
in CD8+T cells and Tregs by C2W9 (figure 5A and online 
supplemental figure 4). Increased expression of granzyme 
B and perforin was observed in a patient with PR. T- cell 
memory subsets showed stable or reduced frequencies of 
TEM and TEMRA within the CD4+ and CD8+ T- cell subsets 
with one PD patient showing expanded memory popula-
tions at progression (figure 5B). Interestingly, the patient 
who achieved a PR showed an increase in T- cell cytotoxic 
profiles by C2W9 in both CD4+T cell and CD8+T cell 
subsets, while PD patients showed no change or a reduction 
in the proportion of circulating immune cells (figure 5C). 
While anecdotal, this change may highlight an impact of 
the combination on T- cell activation in PNEN.

DISCUSSION
PNEN are a histologically heterogenous group of 
tumors distinct from pancreatic adenocarcinoma, with 

B C

A

Figure 5 Increased cytotoxicity profiles in circulation associate with response. Cytometry by time- of- flight profiling of PBMCs 
after activation with PMA/ionomycin at baseline (base), cycle 2 week 9 (C2W9) and progression (prog) time points. Cell types are 
graphed as a proportion of total immune cells. Patients with response are shown in red (PR, solid red; SD>6 months, hashed 
red; n=1 each). Blue dots represent patients with PD or SD<6 months with a hashed line connecting paired longitudinal time 
points. (A) Changes in frequencies of major T- cell lineages (total T cells, CD4+T cells, CD8+T cells and Tregs) over time are 
shown with decreases in Tregs observed in PR patient. (B) Memory states in CD4+T cells (top row) and CD8+T cells (bottom 
row) show expansion of effector memory and TEMRA subsets in PR patient. (C) Cytotoxicity profile as determined by granzyme 
B (GZMB), perforin and interferon-γ production post stimulation within the CD4+effector memory T cells (EM; top row) and 
CD8+EM T cells (bottom row). Increased expression of granzyme B (GZM_B) and perforin is observed in PR patient. C2W9, 
course 2 week 9; EM, effector memory; PBMC, peripheral blood mononuclear cells; PMA, phorbol myristic acetate; PR, partial 
response; Prog, progression; SD, stable disease; TEMRA, CD45RA+T cells; Treg, regulatory T cell.

https://dx.doi.org/10.1136/jitc-2025-011760
https://dx.doi.org/10.1136/jitc-2025-011760
https://dx.doi.org/10.1136/jitc-2025-011760
https://dx.doi.org/10.1136/jitc-2025-011760
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the former arising from endocrine (islet) cells in the 
pancreas.33–35 Systemic treatment options for PNENs typi-
cally include somatostatin analogs, everolimus, sunitinib, 
or chemotherapy (temozolomide+capecitabine).36–39 
Historically, the effect of immunotherapy in PNENs is less 
clear.40 Prior studies of anti- PD- 1 monotherapy have had 
limited activity in PNENs with ORR~6%.41 42 The role of 
anti- CTLA- 4 in addition to anti- PD- 1 had not previously 
been rigorously explored in this setting. For S1609 DART, 
the dose of ipilimumab of 1 mg/kg intravenously every 6 
weeks continuous with nivolumab was chosen on balance 
of toxicity and efficacy, and based on the results of Check-
Mate 227.43 This dosing combination of ipilimumab and 
nivolumab has also become one of the frontline standards 
of care for metastatic non- small cell lung cancer.44

Another recently published immunotherapy basket 
study, CA209- 538, included ipilimumab with a different 
dosing schema (1 mg/kg every 3 weeks for four doses) 
in combination with nivolumab every 2 weeks.45 In this 
study, PNEN had an ORR of 43% (3/7), though these 
were all with high- grade neoplasms (differentiation status 
unclear), including a patient who had disease progres-
sion on prior anti- PD- 1. There were two patients with 
poorly differentiated pancreatic neuroendocrine carci-
nomas (NEC) and five with well- differentiated pancre-
atic neuroendocrine tumors (NET). Of these, one 
pancreatic NEC and two grade 3 pancreatic NET had 
a PR. The KEYNOTE- 028 study included patients with 
well- differentiated PNENs with PD- L1>1% expression 
by 22C3 and 16 patients were ultimately treated with 
pembrolizumab for an ORR of 6.3%.41 In our current 
study, the ORR was 11% (2/19 patients); the CBR 
(SD>6 months+PR+CR), 26% (5/19); only five patients 
had high- grade disease and only two patients had poorly 
differentiated disease (table 1).

Biomarker analyses showed that most patients did not 
express high levels of PD- L1; indeed, only 1 case out 
of 12 assessed had appreciable staining above 1% (and 
that patient had a best response of PD). One of three 
patients with a high TMB achieved an objective response 
and this patient had a very high TMB of~150 mutations/
mB (PFS was 26 months). Peripheral immune analyses 
suggested that activated effector and helper T cells and 
reduced Treg and myeloid cells may be associated with 
therapeutic response, but numbers were limited in our 
analysis; these parameters merit further prospective 
investigation.

Limitations of this study include its lack of central 
pathology or radiology review, no randomized compar-
ator, and small sample size. Tumor grading and histo-
logic assessment were performed locally where the 
rarity of the tumor and pathologic heterogeneity may 
be more variable. Additionally, there was no central 
radiology review of CTs, and local imaging response 
assessments were used for the primary endpoint of ORR 
with RECIST V.1.1. Finally, the number of patients avail-
able for biomarker analyses was limited. Specifically, 
there are only a small number of patients with high 

TMB or intermediate- grade tumors—additional studies 
are warranted before definitive conclusions can be 
made regarding the role of these factors in predicting 
response to dual immunotherapy.

In summary, herein we describe a dedicated PNEN 
cohort of SWOG 1609 assessing low- dose ipilimumab 
plus nivolumab. We demonstrate modest activity in a 
subset of patients with PNEN. Toxicities on this study 
were manageable with no grade 5 events. An 11% PR 
rate and an overall 26% CBR (includes ORR and SD>6 
months) indicate that a subset of patients received the 
majority of benefit in this study, with 3/19 patients 
remaining progression- free for over 2 years in this 
refractory setting. Interestingly, while the majority 
of the benefit was in high- grade PNETs, a subset of 
responding patients harbored intermediate or low- 
grade tumors, which generally did not show benefit in 
our other cohorts of neuroendocrine tumors treated 
with nivolumab and ipilimumab. This recapitulates our 
experience in non- pancreatic neuroendocrine cohorts, 
where almost all benefit was in high- grade cancers.8 9 
Future studies identifying the relevant immunobiologic 
characteristics that are associated with tumor grade and 
immunotherapeutic response across neuroendocrine 
subtypes are warranted, and combinatorial strategies 
are a potential opportunity for patients with this rare 
tumor type.
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