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Abstract 

Purpose: To investigate the cellular and molecular mechanisms associated with targeting CD30-
expressing Hodgkin Lymphoma (HL) and immune checkpoint modulation induced by 
combination therapies of CTLA-4 and PD1.  

Patients and Methods: Phase 1/2, multicenter, open-label, trial NCT01896999 enrolled patients 
with refractory or relapsed HL (R/R HL) after one or more lines of therapy, with adequate 
performance status and organ function. Using peripheral blood, we assessed soluble proteins, 
cell composition, T cell clonality, and tumor antigen-specific antibodies in 54 patients enrolled in 
the phase 1 component of the trial.  

Results: NCT01896999 reported high (>75%) overall objective response rates with 
brentuximab-vedotin (BV) in combination with ipilimumab (I) and/or nivolumab (N) in patients 
with R/R HL. We observed durable increase in soluble PD-1 and plasmacytoid dendritic cells as 
well as decreases in plasma CCL17, ANGPT2, MMP12, IL13, and CXCL13 in N-containing 
regimens (BV+N and BV+I+N) compared with BV+I (p<0.05). Non-responders and patients with 
short progression free-survival showed elevated CXCL9, CXCL13, CD5, CCL17, adenosine-
deaminase, and MUC16 at baseline or after one treatment cycle and a higher prevalence of NY-
ESO-1-specific autoantibodies (p<0.05).  

Conclusions: The results suggest a circulating tumor-immune-derived signature of BV±I+N 
treatment resistance that may be useful for patient stratification in combination checkpoint 
therapy. 

 

Significance Statement 

Identification of multi-omic immune markers from peripheral blood may help elucidate resistance 
mechanisms to checkpoint inhibitor and antibody drug conjugate combinations with potential 
implications for treatment decisions in relapsed HL. 

 

Introduction 

FDA-approved novel therapies have transformed the treatment options available for relapsed or 
refractory (R/R) Hodgkin lymphoma (HL). Brentuximab vedotin (BV), an anti-CD30 antibody-
drug conjugate (ADC), was FDA approved in 2011 for R/R HL patients who have undergone 
autologous stem cell transplant (SCT) or multiple chemotherapy regimens, based on an CR rate 
of 34% and an overall duration of response of 5.6 months (20.5 mo in those with CR) (1). 
Subsequently, in 2016, the PD-1-targeting checkpoint inhibitors nivolumab and pembrolizumab 
were also approved for R/R HL. However, single agent nivolumab has a complete response 
(CR) rate of 14-16%, and a PFS of 15 months in patients with prior exposure to BV (2).  In solid 
tumors, studies have shown that combining anti-CTLA-4 treatment (ipilimumab) with PD-1 
blockade (nivolumab or pembrolizumab) can improve response rates in diverse types of tumors, 
at the cost of a higher rate of adverse events. (3,4). 

The phase 1/2 study E4412 (NCT01896999) evaluated the safety and efficacy of single or dual 
checkpoint blockade with ipilimumab (I) and/or nivolumab (N) in R/R HL in combination with the 
antibody drug conjugate BV (5). This combination was hypothesized to deplete CD30-
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expressing Hodgkin and Reed/Sternberg (HRS) cells and to activate T effector cells to target 
HRS cell killing and overcome therapeutic resistance. We reported a CR rate of 57% (95% CI 
34–78%) for BV+I, 61% (36–83%) for BV+N, and 73% (50–89%) for BV+I+N arms (5). An 
increased number of grade 3-4 adverse events was associated with treatment arms that 
included ipilimumab (43-55%) as compared to the BV+N arms (21%). These promising results 
prompted an expansion to the planned phase 2 of this trial with a randomized comparison of 
BV+N vs. BV+I+N, which recently completed adult enrollment. Molecular and cellular immune 
profiling of biomarkers that could explain differential response or survival to these ADC and CPI 
combinations has not been described to date. 

To identify immune mechanisms associated with BV+I±N immunotherapy and biomarkers of 
resistance or adverse events, which could guide future treatment decisions, we applied 
longitudinal immune monitoring and analysis of blood specimens collected during phase 1 
throughout the course of treatment. Using cellular and molecular multi-omics, we examined 
peripheral markers for associations with clinical outcomes. We performed four different assays 
using peripheral blood plasma and mononuclear cells on specimens collected from 54 patients 
from the phase 1 component of this trial (19 in the BV+I group, 16 in the BV+N group, and 19 in 
the triplet group) (5) including: 1) Olink proximity extension assay (PEA) to detect 92 soluble 
protein plasma analytes, 2) ELISA Grand Serology to measure circulating plasma antibody titers 
against 20+ known tumor antigens, 3) Mass cytometry CyTOF to assess peripheral blood cell 

composition, and cell surface activation/inhibitory marker expression; and 4) Bulk V TCR-seq 
to quantify T-cell immune repertoire diversity. Data from these assays was correlated to 
response rate (categorical, from imaging data, best achieved) and survival (for predictions at 
baseline only).  

 

Materials and Methods 

Clinical trial and biospecimens 

This clinical trial started with Phase 1 and is currently completing Phase 2 (ClinicalTrials.gov 
Identifier: NCT01896999). Patient characteristics, including demographics, previous lines of 
treatment, as well as safety and preliminary efficacy are described in (5). During the dose 
escalation phase, three consecutive treatment groups were enrolled consisting of two arms 
receiving brentuximab vedotin 1.8 mg/kg q3w with ipilimumab at either 1 or 3 mg/kg q6w (BV+I, 
n=6 for Arm A, n=6 for Arm B); brentuximab vedotin at either 1.2 or 1.8 mg/kg q3w with 
nivolumab 3 mg/kg q3w (BV+N, n=3 for Arm D, n=6 for Arm E); and brentuximab vedotin at 
either 1.2 or 1.8 mg/kg q3w with nivolumab 3 mg/kg q3w and ipilimumab 1 mg/kg q12w 
(BV+I+N, n=7 for Arm G, n=5 for Arm H). Another 7 patients per treatment group were 
subsequently enrolled into expansion arms (arms C, F, and I) at the highest respective doses to 
establish safety and preliminary efficacy (Fig. 1A). For this correlative study, Arms A-C (BV+I), 
D-F (BV+N), and G-I (BV+N) were respectively combined, as no significant clinical difference 
was observed related to dose escalation. Blood (cryopreserved after separation as plasma and 
PBMCs) was collected prior to the start of treatment (baseline), on day 1 of cycle 2 [prior to drug 
infusion] (C2D1), at time of first restaging PET/CT [+/- 5 days] prior to cycle 4 (restaging) when 
clinical response was assessed, and after completion of therapy or off treatment (off study). The 
best objective response rate (BOR), including complete response (CR) and partial response 
(PR), at each respective time point, was determined using the International Harmonization 
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Project Group 2007 Revised Response Criteria according to Cheson and Deauville criteria as 
mandated by trial design (5). (RRID:SCR_001905, RRID:SCR_015654, RRID:SCR_006442) 

Olink 

Soluble protein analytes from peripheral blood plasma samples were quantified by Olink’s 
proximity extension immunoassay platform using the Immuno-Oncology (IO) panel. This 
multiplex immunoassay allows the simultaneous measurement of 92 proteins, including 
cytokines, chemokines, and IO markers, across 96 plasma samples, including internal and 
external reference controls, and was performed following the manufacturer's instructions 
(https://cimac-network.org). The Olink data was normalized into NPX values (Normalized 
Protein eXpression) on a log2 scale (https://www.olink.com/question/what-is-npx/) 
(RRID:SCR_003899). 

Grand serology 

Enzyme-linked immunosorbent assay, ELISA, was used to detect and quantify circulating IgG 
antibodies to known tumor antigens, as previously described (6). Briefly, plasma samples were 
analyzed by low-volume semi-automated ELISA for seroreactivity to a panel of recombinant 
protein antigens (NY-ESO-1, P53, SOX2, HORMAD1, ERG, DHFR, PRAME, WT1, MELAN-A, 
SURVIVIN, UBTD2, CT47, MAGE-A4, SSX4, CT10, SSX2, XAGE, GAGE7 and MAGE-A10). 
Low-volume 96-well plates were coated overnight at 4°C with 0.5 µg/ml antigen and blocked for 
2h at RT with PBS containing 5% non-fat milk and 0.1% Tween 20. Plasma was titrated from 
1/100 to 1/6400 in 4-fold dilutions and added to blocked and washed 96-well plates. For assay 
validation and titer calculation, each plate contained positive and negative controls (pool of 
healthy donor sera). After overnight incubation, plates were extensively washed with PBS 0.2% 
Tween 20 and rinsed with PBS. Plasma antigen-specific IgG was detected after incubation with 
alkaline-phosphatase conjugated goat anti-human IgG (SouthernBiotech 2040-04, diluted 
1/4,500), revelation using AttoPhos® substrate and buffer, and measurement using a 
fluorescence reader (BioTek Synergy). By linear regression, a reciprocal titer was calculated for 
each sample and for each antigen as the predicted or interpolated dilution value at which the 
titration curve meets a cutoff value (7). A positive significant result was defined as reciprocal 
titers > 100. (RRID:SCR_019873) 

CyTOF 

Mass cytometry using time of flight (CyTOF) analyses were performed on PBMCs using a 
harmonized protocol as described previously (8). Briefly, 1-5x106 thawed PBMCs were 
barcoded using palladium-based mass tags. Cells were then stained with a metal-conjugated 
antibody panel designed to characterize major immune subsets and surface activation markers, 

along with bead controls spiked-in for data normalization. FCS files underwent bead-based 
normalization, followed by exclusion of Ce140þ beads and bead-cell doublets, Gaussian ion 
cloud multiplet fusion events, and Rh103þ dead cells. Major immune-cell subsets were identified 
using hierarchical clustering approach (Astrolabe Diagnostics, Inc) and further confirmed using 
manual gating. The resulting tables contain cell number, cell frequency and marker expression 
quantiles. Data was transferred to R for differential abundance and surface marker expression 
analysis using orloj, lme4, dream and survival packages. (RRID:SCR_021055, 
RRID:SCR_019916, RRID:SCR_019917, RRID:SCR_021669). Panel of antibodies and 
reagents used for CyTOF are included as supplementary table 1. 

TCR-seq 
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We used the immunoSEQ® Kit from the Adaptive Biotechnologies Corporation that targets T 

cell receptor beta chain (TCR) genes to enumerate rearranged TCR sequences in DNA 
isolated from PBMCs. The assay specifically targets the Complementarity Determining Region 3 

(CDR3) of human TCR gene sequences, formed by rearrangement of the Variable (V), 
Diversity (D), and Joining (J) gene segments and including non-template Nucleotide (N) 
insertions and deletions at the gene segment junctions. Application of the immunoSEQ® Kit was 
analytically validated and performed by the MD Anderson Cancer Center CIMAC. The minimum 
DNA input for the assay was 200 ng per sample. Specifically, the DNA was processed with 
immunoSEQ hsTCRB kit (cat # ISK10050) and Illumina MiSeq Reagent Kit v3 to generate 
libraries and sequenced by Illumina MiSeq Sequencing system (150 cycles). The resulting 
FASTQ files were processed with the Immunarch pipeline to obtain individual clonal 
quantifications. The resulting data was analyzed using R, lme4, dream and survival packages. 
(RRID:SCR_014709) 

Statistical Analysis 

Quality controls. The analysis for all datasets (Olink, Serology, CyTOF, and TCRseq) was 
performed in R software using a mixed linear model strategy to adjust for relevant clinical 
variables and demographics. The data distributions for markers and cell populations for all 
assays were investigated as part of a routine quality control to identify biases, and corrected as 
follows: (1) samples with more than 50% missing values in any analyte were excluded; (2) Olink 
analytes that were under the limit of detection in more than 50% of samples were excluded; (3) 
CyTOF cell populations unassigned by Astrolabe were ignored. QC analyses were used to 
identify biases such as low detection and poor-quality samples. 

Variance analysis. Sample variance profiles were performed to assess the effect of covariates 
with assay data (Olink, Serology, CyTOF, and TCRseq) using the package 
variancePartition/Dream on R (9). Covariates with less than 5% effect on the model were 
excluded from modeling. (RRID:SCR_001905, RRID:SCR_015654, RRID:SCR_006442) 

Survival and Cox proportional hazard models. Univariable and multivariable regression models 
were used to estimate the hazard ratios (HRs) and corresponding 95% confidence intervals 
(CIs) for OS (Overall Survival) and PFS. Log rank and Gehan-Breslow tests were used to 
assess the significance of the difference between endpoints for OS and PFS. The univariable 
models were used to determine which covariates should be kept in the multivariable models. 
Significance was defined as adjusted p-values or False Discovery Rate (FDR) <0.05. 

Adjust p-values for multiple comparisons. For multi-omic assays (Olink, Serology and CyTOF), 
we applied moderate T test statistics. We adjusted p-values using the Benjamini & Hochberg 
method (1995). This helps to control the false discovery rate, the expected proportion of false 
discoveries amongst the rejected hypotheses. Nonetheless, throughout the manuscript we show 
nominally significant results as p<0.05 and adjusted p values represented as FDR<0.05. 

Differential expression. Differential protein expression analysis was performed in R using the 
packages Dream, lme4, from bioconductor. The mixed effect models were built using the 
covariates shown in Fig. 1B. For Olink the independent variables were individual protein levels 
(NPX). For CyTOF the independent variables were the surface markers 95 quantile values. The 
results were visualized using pheatmap and ggplot2 packages.  

Differential abundance. We used the Limma-Dream-lme4 pipeline (9) in R to assess differential 
abundance between populations while modeling the covariates previously indicated in Fig.1B. 
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This approach was used for CyTOF and TCRseq. The clonal expansion populations were 
defined by Immunarch (10). T cell clones were classified into four groups: clones that had little 
evidence of expansion (unique/small clones/non expanded, 1e-5<x<=1e-4% of total clones), 
clones with some or medium expansion (1e-4<x<=0.001% of total clones), clones with large 
expansion (0.001<x<=0.01% of total clones) and hyperexpanded clones (0.01<x<=1% of total 
clones). 

Correlation analyses. We used cor, corrplot, pvclust and hmisc packages in R-Stats to perform 
Pearson (linear) and Spearman (non-linear) correlations between analytes and endpoints. 

Prediction of PFS using logistic regression. We used the package RMS and ROCR available on 
R to build classifiers of PFS status using the olink analytes as predictors and clinical variables 
as covariates. The internal validation was done using cross fold 5 validation.   

Data availability statement 

All data is available upon request at CIDC-CIMAC portal: https://cidc.nci.nih.gov/ upon request. 
All code used for analysis is available upon request at https://github.com/eegk. Data used to 
generate figures shown in this article are attached as supplementary table 2. Including data for 
Olink, CyTOF populations, Serology and TCR beta chain frequency. 

 

Results 

Three consecutive treatment groups (BV+I, BV+N, or BV+I+N) were enrolled, representing 54 
patients with available biospecimens evaluable for correlative markers (Fig. 1A). Blood samples 
were collected before treatment (baseline), during cycle 2 (C2D1), during patient reevaluation 
(restaging), and after completion (off-study) to assess molecular and cellular baseline 
measurements and changes over time on all available PBMC and plasma samples (S. Table 1). 
We performed assay-specific quality control and variance profiling followed by a linear mixed-
effect model to identify differential markers across time, treatments, and responses (Fig. 1B). 
This approach allows to minimize the effects of stage and tumor size (bulky disease) (20). 
Statistical significance was defined as false discovery rate (FDR) adjusted or unadjusted p-
values. 

DYNAMIC CHANGES IN PERIPHERAL BLOOD PLASMA SOLUBLE ANALYTES 
ASSOCIATED WITH TREATMENT BENEFIT 

Soluble protein analyte profiles were measured using a standardized panel of 92 inflammation 
and immuno-oncology-related proteins (Olink) in all 54 patients with available longitudinal 
plasma samples (S. Table 1). First, we assessed significant changes from baseline related to 
treatment arms. Treatment with BV+I+N or BV+N led primarily to a durable increase in soluble 
PDCD1*/PD-1* levels, while BV+I induced increases from baseline for an array of T cell effector 
and cytotoxicity-associated markers such as IFN-γ, GZMA*, GZMH, CD27, CD28, and IL12RB1 
(*FDR<0.05 or p<0.05) (Figs.1C-D and S Fig. 1). Treatments with BV+I also increased decoy 
and apoptotic markers CAIX*, PTN, MICA/B, Gal9, TRAIL (Fig. 1C and S Figs. 1), which was 
not observed after N-containing treatment. Conversely, levels of several circulating proteins 
associated with inflammation, including CCL17*, ANGPT2*, MMP12*, IL-13*, CXCL13*, CCL23, 
were high at baseline and showed a decrease over time associated with N-containing 
treatments, but less so with BV+I (Fig. 1C). In addition, T cell survival- and exhaustion-related 
cytokines (LAG3, TNFRSF4/OX40, CD8A, IL-7, IL-15, PD-L1) were decreased after nivolumab 
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use but not in BV+I (Fig. 1C). Overall, the largest change from baseline was observed for 
soluble PCDC1/PD-1 levels in N-containing therapy groups, attributed in part to drug interaction 
where nivolumab-bound PD-1 may be stabilized in circulation (Figs. 1C-D). Still, even in the 
absence of nivolumab (BV+I group), soluble PD-1 levels also increased from baseline to C2D1, 
suggesting immune activation.   

Next, we asked whether soluble analytes differed per timepoint between responders and non-
responders, using best overall response achieved. Out of 54 patients, 49 had evaluable clinical 
response data. Responders were defined as those experiencing CR or PR (n=43), while non-
responders had SD or PD (n=6). Analysis of clinical outcomes associated with Olink data was 
assessed regardless of treatment group (BV+I, BV+N, BV+I+N) due to the low number of events 
per group.  The levels of plasma CXCL13, CCL17, and VEGFA showed gradual decreases from 
baseline in responders while, conversely, they significantly increased in non-responders over 
time (Fig. 1E-F). Additionally, responders had lower ADA (adenosine-deaminase) and CD5 
levels at baseline and stayed low throughout treatment, while non-responders had spikes in 
ADA and CD5 levels early on which normalized towards end of study (Figs. 1E-F). 

To analyze the impact of soluble plasma analytes on clinical benefit, we performed univariate 
and multivariate Cox regression (adjusted for age, sex, tumor stage and treatment group) and 
Kaplan-Meier analyses of progression-free survival (PFS), using baseline Olink measurements. 
Progression-free survival benefit was associated individually with above median levels of 
VEGFR2 (Fig. 2A). Conversely, higher than median levels CXCL9 and MUC16 were associated 
with worse PFS (Figs. 2C & E). Multivariate Cox regression confirmed MUC16 association with 
worse hazard ratios, independently from age or sex or stage (Fig. 2F). However, CXCL9 and 
VEGFR2 only showed trends in multivariate Cox regression (Fig. 2B & D), potentially due to the 
effect of Ann Arbor Stage (Figs. B, D & F).  

To understand better the prognostic capabilities of these markers, we built a PFS classifier 
using clinical variables alone and combined with VEGFR2, MUC16, or CXCL9 (Fig. 2G). The 
results showed that indeed adding any of these 3 markers could predict progression better than 
clinical variables alone. Also, they showed that area under the curve was the highest for 
VEGFR2 (0.75) followed by MUC16 (0.74), CXCL9 (0.73), PD-L1 (0.70) (selected as control) 
and clinical variables (0.68). 

Next, we compared log rank test to Cox modeling in progression free survival (Fig. 2H), 
orthogonally verifying the results for VEGFR2, MUC16, and CXCL9. This approach was applied 
to overall survival revealing association of IL10, CCL19, VEGFR2, and TIE2 with better OS 
outcomes and CXCL10 and IFN-gamma with worst OS outcomes (Fig.2I). However, these 
findings were not reproduced in multivariate analysis (Supplementary table 3). 

In summary, we found potentially prognostic 3 markers associated with PFS outcomes, but we 
did not find a significant association with treatment, making it difficult to distinguish their 
predictive vs. prognostic role. 

DYNAMIC CHANGES IN PERIPHERAL BLOOD IMMUNE CELL SUBSETS ASSOCIATED 
WITH TREATMENT BENEFIT 

Peripheral blood mononuclear cell (PMBC)-derived subpopulations were quantified using 
CyTOF from 51 patients with available cryopreserved biospecimens (S. Table 1). Differences in 
30 immune cell subsets and 8 compartments (including a category for unidentified cells) were 
quantified simultaneously by semi-automated analysis using the Astrolabe and R platforms. The 
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predominant immune compartments in blood were T cells, followed by neutrophils, monocytes, 
and B Cells (Fig. 3A). Treatments with nivolumab led to an increase in plasmacytoid dendritic 
cells (pDC) in the bloodstream (FDR<0.05, Fig. 3B&E). Plasmablast B cells also showed a 
transient increase from baseline across all three therapy groups, with the most significant 
increase observed in BV+I after the initial treatment cycle (Figs. 3 B&C). Additionally, 
neutrophils and naïve CD4+ T cells showed significant treatment-dependent but divergent 
changes from baseline, occurring in BV+N vs. other combinations (Fig. 3D&F). Specifically, 
naïve CD4+ T cells decreased after one cycle of BV+I but increased at the end of BV+N, while 
neutrophils decreased after one cycle of BV+N but increased at the end of BV+I+N (Fig. 3D, F). 
When comparing treatment groups per timepoint, differences in cellular abundance were found 
at baseline in CD14+ CD16+ monocytes, neutrophils, CD4+ TEMRA cells, and CD56+ CD16+ NK 
cells (Fig. 3G), pointing to potential imbalances prior to treatment in these non-randomized 
patients. Post-treatment memory B cells were significantly more abundant in BV+N vs. others, 
while neutrophils were more frequent in BV+I+N vs. others (Fig. 3H). Overall, nivolumab-
containing regimens appeared to significantly raise levels of antigen-presenting cells (pDC, Fig 
3E, H), while the triplet combination resulted in higher inflammatory cell subsets (neutrophils, 
Fig 3F, H). 

DIFFERENTIAL EXPRESSIONS OF PERIPHERAL IMMUNE CELL SURFACE MARKERS 
ASSOCIATED WITH TREATMENT BENEFIT  

PBMC subsets were also evaluated by CyTOF for inducible surface markers and changes in 
their expression. Durable decrease in PD-1 expression in various T cell subsets (CD8+ & CD4+) 
was seen after nivolumab treatments compared with BV+I (S Figs. 2A-B), attributed to known 
masking of epitope accessibility after nivolumab administration which prevents PD-1 detection 
during the assay, rather than to a biological observation. Reduced expression of other cell 
surface markers was associated with nivolumab treatments relative to ipilimumab, including 
HLA-DR (on memory B cells, CD4+ CD8+ T cells), CD45RA (on memory B cells), CD39 (on 
memory B cells, CD27- B cells), CD8 (on CD56+ CD16+ NK cells), CD57 (on CD56+ CD16- NK 
cells, type 2 CD1c+ dendritic cells), and CD95 (on CD14- CD16+ monocytes) (S Figs. 2A-B).  

When analyzing surface expression changes by response to treatment, CD56 and CD45 levels 
on NKT cells were found lower in non-responders at baseline (S Figs. 2C-D). Similarly, CD57 
expression on CD8+ TEMRA started lower and increased in non-responders over time (S. Figs. 
2C-D). Interestingly, pharmacodynamic changes post-treatment in CXCR3 expression on pDC 
showed higher expression in responders compared to non-responders (S. Figs. 2C-D). In 
summary, CXCR3 could be useful as an activation marker on pDC in responders, while TEMRA 
expression of CD95 and CD57 was associated with resistance. 

CIRCULATING ANTIBODIES TO TUMOR-ASSOCIATED ANTIGEN ASSOCIATED WITH 
TREATMENT BENEFIT  

Autoantibody (AuAb) profiling of common tumor-associated antigens was performed in 
longitudinal plasma samples from all 54 patients using ELISA Grand Serology for IgG titers 
against a series of 19 full-length recombinant proteins (S. Table 1). At multiple time points in 
each therapy group, tumor-associated antibodies were detected in both responders and non-
responders (Fig. 4A). NY-ESO-1 AuAbs were detected in more than 40 percent of patients who 
were non-responders, from baseline and at all four time points (Fig.4B). In comparison, though 
prevalent at baseline, NY-ESO-1 AuAbs were absent in more than 90 percent of responder 
patients after treatment initiation. Antibody titers for NY-ESO-1 were more often not detected 
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(negative) and had lower average titers in responders than non-responders at all time points 
(Fig. 4B). 

T CELL CLONAL EXPANSION ASSOCIATION WITH TREATMENT BENEFIT 

T cell clones derived from PBMCs TCR V were classified into two groups: clones that had little 
evidence of expansion (unique/small clones/non-expanded, <=1e-4% of total clones) and clones 
with evidence of expansion (>1e-4%). We used two standardized metrics (clonal expansion and 
diversity) for investigating the association of clonality with treatment or response. There were no 
significant differences in clonal diversity over time except an increase in BV+N at restaging 
compared to baseline (p<0.05) (Fig. 4C). However, clonal overlap increased during treatment 
regardless of treatment type (p<0.05) (Fig. 4D). There was no significant difference between 
clonal expansion between BV+I+N, BV+N, and BV+I (Fig.4E). When looking at clinical benefit, 
the percentage of expanded clones was higher in responders vs. non-responders at C2D1 
(p<0.05), but not at other time points (Fig. 4F). Finally, clonal diversity was increased in 
responders compared to non-responders at restaging and off-study, approached but did not 
reach statistical significance (p>0.05) (Fig. 4G). Overall, evidence of clonal expansion and 
clonal overlap following treatment was found, with marginal contribution to clinical benefit. 

BIOMARKERS ASSOCIATION WITH ADVERSE EVENTS 

Although variations in the number of adverse events (AEs) were reported among BV+I+N, 
BV+N, and BV+I treatments, our analysis did not reveal a significant association between AEs 
and biomarkers in any of the assays. We meticulously excluded unlikely related and unrelated 
AEs, focusing on grades 3 to 5 and dose-limiting toxicities with greatest clinical impact. The 
complexity of associating adverse events with biomarkers stems from intricate interactions 
involving genetic predispositions, environmental influences, and individual response variations. 

 

Discussion 

In this study, we examined peripheral molecular and cellular markers for their ability to 
distinguish differential treatment response and progression-free survival in patients with R/R HL 
treated with combination of single or dual checkpoint inhibitor combined with ADC (Suppl. 
Fig.3). Our findings contribute to the understanding of the immune landscape of HL using 
rigorously validated and harmonized multi-omics technological platforms for immune monitoring 
of novel therapies. The overarching goal of these research efforts was to identify potential 
immune signatures for risk stratification and therapeutic decision-making for patients with HL 
treated with immunotherapy (11). Soluble plasma or serum proteins have previously been 
reported as capable of distinguishing HL from healthy patients through immune response-
related markers such as PD-L1, CCL17, CCL3, IL-13, MMP12, TNFRS4, and LAG3 (12). We 

found proteins that increased in plasma post-treatment, particularly enriched in cytotoxicity-
related markers (IFN-γ, GZMA/H, CD244) following treatment with I-containing arms, while 
decreases in stromal-derived factors, such as CCL17, ANGPT2, IL13, CXCL13 were observed 
in N-containing arms. Interestingly, higher levels of CCL17, as well as ADA, CXCL13, CD5, and 
VEGFA, were associated with lack of treatment response, regardless of treatment type. Some of 
these proteins have been previously associated with adverse HL outcome: CCL17 from tumors, 
also known as TARC (13,14), CXCL13 in PD-1+ T cells (15); VEGF in tumors (16,17). Further, 
elevated levels of these proteins have been linked to HL compared to healthy controls (18). 
Despite constitutive expression of PD-L1 in HL and reports of serum PD-L1 as a potential 
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predictor of response (19-21), we did not observe soluble PD-L1 as a clinically relevant marker 
in plasma. Interestingly, the strongest markers of progression were ADA and CD5, which were 
transiently elevated early post-treatment (C2D1) in non-responders. Though these markers had 
not been previously shown as prognostic in HL, there is literature showing ADA and its ligand 
CD26 as higher in ALK-positive NHL and HL (22) as well as being associated with poor 
outcome in other tumor types (23).  

Importantly, despite high CR rates, many patients recur and therefore, PFS may be a better 
prognostic marker of durable benefit. We identified elevated plasma CXCL9 and MUC16 at 
baseline, and reduced VEGFR2 as associated with worse PFS. MUC16, also known as CA125, 
has been extensively described as a marker associated with progression in solid tumors (24), 
but it is underexplored in HL. The amount of soluble VEGFR2 may be contributing to how much 
ligand is available for tumor growth and vascularization. It is also not clear why CXCL9 levels, 
which increase with immunotherapy, had a negative impact on PFS, but it could reflect patients 
with higher prior lines of treatment, since CXCL9 levels are affected by prior immunotherapies, 
or represent higher baseline inflammation, which has been described to be a poor predictor 
(25). Lymphoma cytogenetic features, including tumor mutation burden, could also affect the 
analytes measured in blood, but unfortunately, data from tumor tissue was not available for our 
analysis at the current time. Overall, our study validates previous studies and suggests novel 
soluble proteins associated with treatment resistance.  

Although the potential role of CD4+ T cells as inflammatory/immune regulators in HL has 
previously been associated with response (26,27), we found no changes in effector or 
regulatory CD4+ T cells except CD4+ TEMRA and NK cells differentially prevalent at baseline 
across treatment groups. Additionally, increased B memory cells and neutrophils were 
associated with treatment (highest in BV+I+N), both of which have been associated with 
refractory disease (27). Interestingly, plasmacytoid dendritic cells were generally highly 
increased with all treatments and CXCR3 induction on pDC was associated with favorable 
response to treatment. While pDC are generally rare, they are usually reliably identified due to 
their distinct lineage markers. Because CXCR3-ligands CXCL9 and CXCL10 were detected in 
circulation of patients with poor survival, we speculate that they may reduce CXCR3 pDC from 
circulation due to homing to tissues. In contrast, CXCR3 pDC in blood would be expected to be 
more prevalent with low CXCL9/10. The data may indicate pDC have a pathogenic role in HL, 
as has been previously observed with increased circulating pDCs with favorable response to 
treatment of HL (28). 

Patients with resistance to treatment also had increased levels of surface markers CD56 on 
NKT, CD57 and CD95 on CD8+ TEMRA, that may indicate improper differentiation of effectors. 
CD57 has been associated with terminal differentiation and senescence of NK cells, and our 
data suggests the expansion of this phenotype over time in non-responders. While provocative, 
these observations require prospective validation (29-32). T cell clonal expansion is widely 
reported as a prognostic signature of response in patients with HL (33,34), specifically when 
associated with the expansion of CD4+ T cells or gamma delta T cells (35). Patients with 
clonally expanded T cells at baseline confirmed some of these observations, and we also 
observed trends of increase in clonal diversity over time, although it did not reach statistical 
significance potentially due patient heterogeneity. 

Our study also investigated the impact of tumor-specific autoantibody (AuAb) profiles on drug 
mechanisms and outcomes. NY-ESO-1, MAGEA4, PRAME, and SSX2 are potential cancer-
testis antigens that have been associated with HL in various studies and tested in clinical trials 
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(36). Evidence in solid tumors suggests that patients with NY-ESO-1 preexisting immunity fare 
better than NY-ESO-1 seronegative patients after checkpoint blockade (37). Here, we observed 
the opposite, where non-responders were enriched in NY-ESO-1 Ab at baseline (Fig. 4A), even 
though a small fraction (<15%) of responders also showed the presence of NY-ESO-1 AuAb 
(Fig. 4B). Like other cancer-testis antigens, NY-ESO-1 expression in cancer is induced by DNA 
hypomethylation and histone acetylation (38). Antibodies could therefore be a surrogate for 
more aggressive tumors, which we could not confirm due to absence of tissues to correlate 
antigen presence. While past studies have failed to link clinical benefit to expression of these 
cancer-testis antigens in HL (39), more recent attempts at harnessing T cell response via 
adoptive transfer have demonstrated safety and preliminary efficacy of targeting cancer-testis 
antigens (40). Therefore, considering the role of endogenous immunity using cancer-related 
plasma circulating AuAb could be useful and would be warranted in future studies. 

Important limitations of this study include absence of available tumor tissues to investigate the 
source or impact of peripheral markers on the tumor microenvironment. In addition, it is 
important to note that patients were not randomly assigned to treatment groups, and that 
attrition of available samples occurred with time. Nevertheless, the statistical modeling strategy 
used allows minimization of these biases by incorporating fixed and random effects. 
Additionally, the large imbalance in responders vs. non-responders precluded treatment-specific 
analyses of clinical benefit, which were only evaluated for the entire cohort. Finally, we could not 
properly quantify neutrophil counts, known to be prognostic in HL, because cellular assays were 
conducted with PBMCs, though qualitative differences could still be assessed in neutrophils 
surviving density gradient purification. 

In summary, we found that elevated circulating plasma proteins CXCL13, ADA, CXCL9, MUC16 
and CCL17 as well as NY-ESO-1 autoantibodies were associated with poor outcomes to 
treatment with BV combined with I, N, or both. Together, it is possible that elevated baseline 
levels of plasma CXCL9, presence of tumor-related NY-ESO-1 autoantibodies, and reduced 
plasma VEGFR2 highlight heavily pre-treated tumors that may exhibit primary resistance to 
treatment despite presumed presence of immune infiltration and recognition. In addition, 
markers increasing from baseline in patients progressing through treatment include CXCL13, 
CCL17, and reduced clonal T cell diversity, likely reflecting increasing tumor burden and 
activation of a Tfh axis previously associated with poor prognosis of lymphocyte-rich HL (41). 
Reduced cytotoxicity-related markers on NKT and TEMRA were also seen at start of treatment in 
patients with poor outcomes, while increases in circulating CXCR3 pDCs were associated with 
favorable response, as also observed independently (28). These results suggest drug-related 
mechanistic effects on immune cell activity that could contribute to treatment sensitivity or 
response vs. resistance, and potentially impact treatment decision making. If validated these 
findings may also suggest novel therapeutic strategies. The phase 2 component of this clinical 
trial (NCT01896999) has concluded enrollment, and we will prospectively validate the immune 
markers identified in this study. If validated, these may be important tools towards a 
personalized approach to immunotherapy in HL. 
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Figure legends 
 
Figure 1. Protein dynamics in Hodgkin lymphoma during checkpoint blockade treatment. 
A. Overview of the clinical trial E4412 experimental design. Three treatment arms included: (1) 
Brentuximab vedotin (BV) + ipilimumab (I); (2) BV + nivolumab (N); and (3) BV+I+N, with 
participant number (n) indicated. B. Regression modeling strategy using mixed effect models 
applied to analyze independently four different assay methodologies. Each assay was modeled 
considering relevant clinical variables and adjusted for multiple testing using false discovery rate 
(FDR) correction. C. Summary heatmap showing the log2-fold change (Log2FC) between time 
points and treatments. The changes with a positive Log2FC over time in color blue are 
associated with a decrease over time and red with an increase over time. The –log10(p-value) is 
represented by the size of the circles, indicating statistical significance as the circles increase. 
D. Line and boxplot figures showing the changes in expression for markers increased post 
treatment such as PDCD1, GMZA, PTN, CAIX, IL18, CD28 and markers decreased post 
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treatment such as CCL17, ANGPT2, IL13 and CXCL13. E. Summary heatmap of differential 
expression associated with response. The changes with a positive Log2FC in color blue are 
associated with a lower expression in non-responders and red with higher expression in non-
responders. F. Line and boxplot examples of significant (p<0.05 & FDR<0.05) proteins 
associated with response (blue) or non-response (red) over time. 
 
Figure 2. Association of plasma cytokines with clinical benefit. A, C & E. PFS survival 
analysis shows the Kaplan Meyer curves for VEGFR2, CXCL9 and MUC16, respectively. 
Statistics using log rank test and cox proportional hazard models are shown. Higher than 
median VEGFR2 levels were associated with slower progression while higher than median 
levels of CXCL9 and MUC16 were associated with faster progression. B, D & F. Forest plot for 
VEGFR2, CXCL9 and MUC16, respectively. Here, we show the multivariate statistics for each 
of these proteins including sex, age, treatment type, and cancer stage (Ann Arbor stage). These 
figures verify the directionality of the KM curves showed and show that these 3 proteins are 
independent of these clinically relevant covariates. G. Shows the Receiver operating 
characteristic (ROC) curves for the prediction of PFS using VEGFR2, MUC16, CXCL9, PD-L1 
and clinical variables. Ordered from most relevant to least relevant model, reflected on the AUC 
values. H. Univariate PFS Cox modeling of Olink analytes. I. Univariate OS Cox modeling of 
Olink analytes. Both I and H, show in the x-axis the hazard ratio and the y-axis shows the -
log10(p-values) based on the log rank test.  

Figure 3. Cellular dynamics in Hodgkin lymphoma during checkpoint blockade treatment. 
A. Cell type composition of major cell groups (myeloid and lymphoid) for all available samples at 
baseline. This bar plot shows the composition and variation of cellular components, including 
unassigned cells, across all patients. The cell types were identified using a semi-automated 
approach with the software Astrolabe. B. Heatmap map showing differentially abundant cell type 
changes over time. The rows are shown as relative abundance or scaled (z-score) allowing 
comparison across samples for each cell type simultaneously. C-F. Boxplots and line plots 
colored based on treatment showing the dynamics for the differentially abundant cell types. G. 
Boxplots showing the differentially abundant cells between treatments at baseline. H. 
Comparison of cell abundances for different treatments after the start of treatment.  

Fig. 4. Cancer antigen detection and T cell clonal dynamics associated with treatment 
and response. A. Heatmap showing cancer antigen detection by ELISA for all samples. The 
color represents the log10 scale antibody titers. Positive detection is considered above levels of 
2 (pink), while negative detection is represented by the color black. The top rows of the figure 
show the treatment group, best overall response, and time. The figure is separated into non-
responders (left) and responders (right). Each column box is hierarchically clustered for 
simplicity. B. Pie charts showing the association of NY-ESO-1 presence (left column) and non-
detection (middle column). Boxplots (right column) show all titer levels for non-responders and 
responders. C. Boxplots showing the standardized absolute clonal diversity index calculated 
using Immunarch R package. The clonal diversity are changes are shown over four time points 
(Baseline, C2D1, Restaging, and Off study) per treatment arm. The p-value from Wilcoxon rank 
test is shown on top of the boxes. The y-axis is identical for all 3 treatment arms. There was no 
statistical difference between the treatments due the observed large variances (patient 
heterogeneity). D. Boxplots showing increase in clonal overlap over time for all 3 treatments. P 
values were estimated using Wilcoxon ranked test. E. Clonal expansion was stratified into 
unique and expanded clones (black and orange, respectively). The stacked barplot shows the 
average percent of each clonal expansion class over time and per treatment arm. There were 
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no statistical differences identified between treatment arms. F. Boxplots showing the percent 
abundance of only expanded clones shown for responders and non-responders over time. 
There were no significant differences between these two groups except for C2D1 using 
Wilcoxon rank test. G. Clonal diversity boxplots comparing responders and non-responders. 
Overall, responders had a higher diversity yet, it did not reach statistical significance. 
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