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Computational B-cell epitope 
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Epitope identification is essential for developing effective antibodies that can detect and neutralize 
bioactive proteins. Computational prediction is a valuable and time-saving alternative for experimental 
identification. Current computational methods for epitope prediction are underused and undervalued 
due to their high false positive rate. In this work, we targeted common properties of linear B-cell 
epitopes identified in an individual protein class (metalloendopeptidases) and introduced an 
alternative method to reduce the false positive rate and increase accuracy, proposing to restrict 
predictive models to a single specific protein class. For this purpose, curated epitope sequences from 
metalloendopeptidases were transformed into frame-shifted Kmers (3 to 15 amino acid residues long). 
These Kmers were decomposed into a matrix of biochemical attributes and used to train a decision 
tree classifier. The resulting prediction model showed a lower false positive rate and greater area under 
the curve when compared to state-of-the-art methods. Our predictions were used for synthesizing 
peptides mimicking the predicted epitopes for immunization of mice. A predicted linear epitope 
that was previously undetected by an experimental immunoassay was able to induce neutralizing-
antibody production in mice. Therefore, we present an improved prediction alternative and show that 
computationally identified epitopes can go undetected during experimental mapping.

Correct epitope identification is essential for developing vaccines and selecting high-affinity antibodies for immu-
notherapy and immunodiagnostics1. Experimental epitope identification is an expensive procedure and com-
prises several challenges. These challenges include antibody production to identify antigenic regions in a target 
protein, adequate animal models, and further epitope validation through crystallography. Besides, high-affinity 
antibody methods and immunoassays can contradict each other on which region is a better target. On the other 
hand, computational approaches can help to guide experimental assays and improve precision by selecting spe-
cific regions with high probability of being effective epitopes2.

Attempts to predict B-cell epitopes started in the 70 s3. They focused on amino acid properties within 
a sequence, such as hydrophobicity, hydrophilicity, or antigenicity, to identify propensities and patterns4,5. 
Exhaustive benchmark procedures for (and rigorous statistical analysis of) the biochemical properties that influ-
ence epitopes have revealed that single-scale amino acid profiles cannot be used to reliably predict epitope local-
ization6,7. Current classification techniques involve a combination of attributes to increase the information gain. 
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These methods are sensitive to data quality and are often subject to under- or over-representation of attributes. 
This approach can produce false negatives and positives, which—despite good accuracy (area under the curve 
[AUC] of 0.7)—lead to misidentification of epitopes7.

The experimental methods that accompany computational identification have limitations. Often, different 
wet-lab techniques are in disagreement on the important regions in a protein, thus resulting in highly heterogene-
ous epitope composition8,9. The removal of this experimental noise to train proper classifiers has been attempted 
by combining attributes, but the results have not been significantly better than those obtained with a few physic-
ochemical attributes4,10,11.

It is generally accepted that most epitopes are conformational12, but even though some algorithms focus on 
structural properties to target these epitopes, prediction has not improved13,14. A key factor for achieving greater 
success in separating epitopes from the background is a reduction in both computational and experimental 
bias8,15. Public databases compiled from validated information16 and statistical analyses17 are essential for build-
ing adequate computational models designed for epitope prediction18,19. Moreover, it should be considered that 
immunological attributes are strongly related to animal models and evolutionary traits of a protein20–22.

Restricting the problem to a specific antigen group may lead to more precise epitope prediction because 
of the increase in information quality and a reduction in the noise from other protein groups. For testing this 
hypothesis, we focused on metalloendopeptidases carefully curated by means of available information to predict 
epitopes16,23. This article describes a methodology—based on a decision tree classifier—for identifying epitopes 
in a single protein class and for producing neutralizing antibodies against target proteins. The proteins used to 
experimentally validate our hypothesis belong to the venom of three snake species: Bothrops atrox, Bothrops asper, 
and Bothrops leucurus. Snakes from the Bothrops genus cause more than 80% of yearly snakebite accidents in 
Brazil24, thus being medically significant25,26. These venoms exert proteolytic action with well-known biological 
effects such as hemorrhage that can be evaluated in vitro and in vivo27,28. These characteristics allow for studying 
the neutralizing-antibody capabilities on the basis of our computational and experimental results, thereby, unveil-
ing antigenic and immunogenic protein properties.

Results
Kmer classification rules allow for reducing false positives from nonepitope residues.  Our 
manually curated dataset is available in Supplementary Material 1. It contains 40 epitopes, as described in the 
Methods section. This dataset was transformed into a matrix summarizing 101,115 elements representing Kmers 
of 3 to 15 amino acid residues (aa), each described by 33 attributes. When a Kmer maps 50% or more of its length 
onto an epitope or nonepitope, it is assigned to that respective class by our approach. This method produced fewer 
false positives than did other labeling methods, as illustrated in Fig. 1. Red lines indicate a true epitope, while 
black lines represent computational prediction. The example shows Kmers of 6 and 15 aa under three selection 
conditions: when only 1 aa is required to label the Kmers as an epitope (A and B), when the 50% or more rule used 
in our method is applied (C and D), and when the exact epitope must be matched to regard a Kmer as an epitope 
(E and F). It must be highlighted that the method proposed here is less sensitive for small epitopes (under 5 aa), 
but it can be later corrected by the SMOTE algorithm during the decision tree classifier training.

Charged amino acid residues contribute to B-cell epitope prediction with a decision tree model.  
We used a decision tree classifier for predicting epitopes of three metalloendopeptidases from Bothrops snake 
venoms (Bap1, Atr-I, and Leuc-a). Epitopes derived from these proteins were not present in our classifier train-
ing dataset. The classification tree is presented in Supplementary material 2. A comparison with random-forest 
attribute analysis highlighted the importance (for the aliphatic index) of the percentages of Arg (R), His (H), Lys 
(K), Glu (E), Asp (N), Pro (P), and Trp (W). Table 1 summarizes this comparison. The highlighted attributes rep-
resent the first nodes of the decision tree model. Decreased Gini values are an inequity measure between epitope 
and nonepitope classes. The lower values represent the best attributes across a million trees growth with random 
forest.

Experimental and computational B-cell epitope mapping.  To compare our computational predic-
tion method with experimental approaches, we used SPOT immunoblotting to map epitopes within metallo-
endopeptidases Atr-I, Leuc-a, and Bap1, using specific antibodies developed against each protein. Each protein 
was probed with all three antibodies: anti-Atr-I, anti-Leuc-a, and anti-Bap1. We identified two epitopic regions 
for Atr-I (aa 19–39 and aa 46–75), shown as blue lines (Fig. 2b), three regions for Leuc-a, highlighted as green 
lines (Fig. 2c), and two regions for Bap1, presented as orange lines (Fig. 2a). The local alignment showed that 
Atr-I shares a sequence identity of 55.45% and 50% with Bap1 and Leuc-a, respectively, while Leuc-a and Bap1 
share 78.22% identity (Table 2). Besides, SPOT-identified epitopes presented similar position within the protein 
sequences.

We predicted eight epitopic regions for Atr-I (positions 4–6, 12–20, 28–35, 79–83, 127–136, 153–156, 165–168 
and 180–183), six epitopic regions for Bap1 (13–18, 39–44, 49–52, 77–86, 161–169, and 176–188), and six epitopic 
regions for Leuc-a (11–24, 38–48, 78–84, 114–130, 147–168, and 176–183; Table 3). These predicted regions suc-
cessfully matched experimental results (Fig. 2). The experimental mapping by SPOT yielded two epitopes in Bap1 
(orange lines), two in Atr-I (blue lines), and three in Leuc-a (green lines). These regions were identified by means 
of specific sera against each of these toxins. Cross-reaction was also observed when we employed different anti-
bodies against each protein. The anti-Leuc-a antibody, when used against the Bap1 spot membrane, recognized 
a region different from that recognized by anti-Bap1 serum. On the other hand, anti-Atr-I sera did not recognize 
any epitope from Bap1. Furthermore, the anti-Leuc-a antibody when used against Atr-I, recognized two central 
regions different from those recognized by anti-Atr-I or anti-Bap1 sera. Anti-Leuc-a identified a single epitope 
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region close to the C-terminal Atr-1 segment. Anti-Atr-I antibodies only identified epitopes in Atr-I, while the 
other two polyclonal antisera showed cross-reactivity.

Receiver operating characteristic analysis shows an improvement in accuracy and a reduction 
in false positives.  Three state-of-the-art prediction methods and our model were compared by the ROC 
curve analysis with default cutoffs that each software suggested. We also used cutoffs that maximized AUC and 
Precision (Table 4). We obtained mean AUC for the three proteins (Bap1, Leuc-a, and Atr-I) of 0.5407 followed by 
ABCpred (0.5382), TEPRF (0.5297), and BepiPred (0.4450). All the measurements showed that our predictor had 
better performance, accuracy, precision, true positive rate, and AUC while always having the lowest false positive 
rate (Table 4). The false positive rate was found to be significantly lower (0.3266) when compared to ABCpred 
(0.5752), BepiPred (0.3961), and TEPRF (0.5121).

Experimental validation of epitope prediction by immunization of mice.  We selected two Atr-I 
regions to be synthesized as peptides by Fmoc chemistry for antibody production. One epitope corresponding 
to the N-terminal region (9VDLFIVVDHGMFMKY23) was identified by our model with a prediction score of 
0.49; we also selected a central region (99LTSTDFNGPTIGLAY113), which was not identified by our model. 
Both regions were not mapped in SPOT experiments. We chose a cutoff of 0.2 to classify a sequence as pos-
itive. The peptides were called AtrCPEN (Computationally Positive Experimentally Negative) and AtrCNEN 
(Computationally Negative and Experimentally Negative), respectively. Their molecular masses were verified 
by mass spectrometry after synthesis and corresponded to the predicted amidated and acetylated masses (not 
shown).

AtrCPEN and AtrCNEN peptides were utilized for immunization of BALB/c mice, after incorporation into 
liposomes as an adjuvant. An ELISA was conducted to monitor antibody production against AtrCPEN and 
AtrCNEN. It was possible to detect specific antibody production after the 7th dose (day 63; Fig. 3D). The two 
synthesized peptides were not recognized by anti-Atr-I serum. By contrast, anti-AtrCPEN (0.3 Abs.) recognition 
of Atr-I as an antigen was slightly higher than that obtained by Anti-AtrCNEN (0.2 Abs; Fig. 3B). Antipeptide 
sera (Anti-AtrCPEN and Anti-AtrCNEN) only poorly recognized Atr-I. The antibody responses were compared 
by the t test showing a p-value lower than 0.05 for all groups (confidence interval: 95%).

To verify whether the produced antibodies against Atr-CPEN and Atr-CNEN had neutralizing properties 
against Atr-I, we tested the enzymatic activity of Atr-1 over time, in the presence of anti-CPEN and anti-CNEN, 
using a synthetic substrate, Abz-LVEALYQ, that produces fluorescence when cleaved (Supplementary File 3). 

Figure 1.  Selection of Kmers as epitopes. The graphs illustrate how the selection of positive Kmers to be 
considered epitopes alters the rate of false positives based on compositional rules. As an example, Kmers of 6 
and 15 aa were employed. The X-axis shows the amino acid sequence position. The Y-axis shows the probability 
of an amino acid residue to be a part of an epitope. Red lines represent a true epitope. Black lines represent 
computational prediction. (A) and (B) illustrate a prediction where at least one amino acid residue must be 
predicted as an epitope to label a Kmer as positive (C) and (D) show that when 50% of the amino acids must be 
predicted as an epitope to label a Kmer as positive (E) and (F) shows when all the amino acid residues from of a 
Kmer must be predicted as an epitope to label a Kmer as positive. The arrows indicate the portion of potentially 
false positives in each prediction method. On the right side of the figure, there is an example of prediction of 
an epitope marked red within the sequence SYVDLFIRETDFLSLDE by means of a 6 aa Kmer and the three 
approaches illustrated in the graphs.
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This assay showed Atr-I activity reduction by 80–70% for anti-CPEN and 30–20% for anti-CNEN. This result 
indicated the successful neutralization of Atr-I activity, when incubated with anti-CPEN; this neutralization was 
significantly stronger than that obtained with the anti-CNEN antibody.

Because Atr-I activity neutralization by anti-CPEN antibodies was observed in vitro, Atr-I-induced hemor-
rhage neutralization was tested in vivo, in BALB/c mice. They were challenged with a toxin amount corresponding 
to 1 Minimum Hemorrhage Dose (19 μg of Atr-I in 100 μL), as described by Schneider et al., 2016. The animals 
challenged with Atr-I mixed with anti-AtrCPEN serum showed a clear reduction in hemorrhage when compared 
to the positive control group. Negative control with preimmune serum samples and anti-AtrCNEN serum yielded 
slightly reduced hemorrhage when compared with the positive control, probably owing to other serum compo-
nents that interfere with the enzymatic metalloendopeptidase activity (Fig. 4).

Spatial distribution of epitopes obtained by computational and experimental methods showed an overlapping 
region, whereas cross-reactive regions did not seem to have any pattern (Fig. 5).

Discussion
B-cell epitopes are related to a humoral immune response and play a key role in vaccine production and several 
biotechnological applications, while T-cell epitopes are associated with cell-mediated immunity29,30. The exper-
imental epitope identification is time- and resource-consuming in comparison with other computational tech-
niques2. Computer algorithms to predict B-epitopes by means of an antigen sequence3,4 or structure9,13,31 have 
been refined over the past decades. These techniques have been accompanied by experimentally characterized 
datasets comprising both positive epitopes and negative nonepitopes15.

The first challenge for epitope prediction is represented by database construction aimed at organizing the 
disproportional negative or nonepitope examples16. Another complication is the negative example selection, 
based on randomly chosen sequences, where no antibody binding is reported22. Collections of both epitopes 

Attribute Decreased Gini
Decreased 
Accuracy

Positive charged RHK 75,28 37.50*

Negative charged DE 79,12 52,71

Uncharged STNQ 101,78 63,27

Special CGP 100,9 43.43*

Hydrophobic AVILMFW 92,84 43.16*

gravy 198,59 60,82

Aliphatic index (5) 118,75 45.49*

% Atoms of C 234,22 76,8

% Atoms of H 212,17 58,34

% Atoms of N 233,88 59,07

% Atoms of O (12) 198,23 68,39

% Atoms of S (1) 166,32 67,65

% Arg (4) 72,98 39.25*

% His (2) 68.85* 53,73

% Lys (3) 36.46* 42.84*

% Asp 80,68 56,97

% Glu (6) 66.12* 52,07

% Serine 107,13 76,88

% Thr (11) 94,8 73,62

% Asn (9) 74,87 47.39*

% Gln 73,67 55,23

% Cys 77,22 45.50*

% Gly 98,59 52,81

% Pro(10) 58.36* 39.87*

% Ala 86,08 65,12

% Val 48.48* 38.31*

% Ile 68.87* 40.67*

% Leu 74,26 42.55*

% Met 87,91 61,82

% Phe 48.65* 39.62*

% Tyr 64.44* 56,46

% Trp(8) 57.03* 51,84

Isoelectric point (7) 183,09 54,9

Table 1.  Valuable attributes from random-forest and decision tree classifiers. The attributes in bold represent 
the first nodes of the decision tree and (*) indicate the best attributes from random-forest.
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and nonepitope sequences from experimentally validated data are available, e.g., the Immune Epitope Database 
(IEDB)16. Nevertheless, experimental nonepitope data still have the potential for being due to possibly flawed 
result interpretation, a lack of detailed mapping, or simple experimental errors21. Furthermore, this principle 
applies to all existent experimental and computational methods as demonstrated in our results dealing with the 
production of neutralizing antibodies having a region undetected by experimental mapping.

The factors that influence the immune response and epitope detection are mostly attributed to genetics19, 
evolution9, immunological complexity5,18,20, structural conformation32, surface indistinguishability15, and oth-
ers31. Moreover, we recently explored the differences between epitopes from different antigen classes or families 
and revealed that these differences can be useful for identification of epitopes23. We took advantage of the antigen 
sequence from a single protein class (metalloproteinases) to train a decision tree classifier. Furthermore, we vali-
dated our hypothesis by comparing our results to those of state-of-the-art predictors and experimental methods 
for three different proteins, thus showing an accuracy improvement and a reduction in the false positive rate 
(Table 4). The important attributes for classification included the isoelectric point, lateral chain size, and amino 
acid residues such as Asn, Gln, Ser, Thr, Lys, or Trp (Table 1), which are described as antigenic2,6,7. Other studies 
indicate that sequence attributes can be used for analyzing structural33 and sequential epitopes34,35, thus highlight-
ing hydrophilic amino acids because they surround antigenic determinants36.

Classification models are great tools for identifying patterns within complex data and gradually gain impor-
tance in computational biology owing to rising information amounts37. Machine-learning approaches have undis-
puted advantages over simpler methods, such as regression38, but their persistent limitations are the inability to 
point out relevant characteristics and the necessity of high computational power34. Regression-based methods 
such as random forest39, decision tree40, and linear regression11 allow researchers to identify these attributes rap-
idly41,42 (Table 1, Supplementary File 2).

Here, we show an improvement in the performance on in silico epitope prediction (Table 4) and in vivo vali-
dation (Figs 2 and 4), especially in terms of the false positive rate, when compared to other methods (BepiPred, 
ABCpred, and TEPRF). BepiPred employs hidden Markov models to identify propensities in sequence data, 
despite underperformance of similar approaches, as uncovered by Blythe and Flower6,32. ABCpred is a method 
that involves recurrent neural networks to analyze fixed length windows of less than 20 amino acids and their bio-
chemical properties43. The random forest approach (TEPRF) takes advantage of two powerful machine-learning 
techniques: bagging (bootstrap) and random attribute selection. TEPRF yields a large number of false positives 
that could be explained by the attempt at overpredicting the under-represented groups or experimental epitopes. 

Figure 2.  Predicted and experimental epitope overlapping. The X-axis shows amino acid residue position. 
The Y-axis represents the experimental and predicted epitope score values from 0 to 100. Black lines represent 
the epitopes predicted by our model. The blue, orange, and green lines represent epitope mapping by SPOT-
Immunoblotting using anti-Atr-I, anti-Bap1, and anti-Leuc-a antibodies respectively. Letters (a–c) represent 
the mapping of epitopes within the individual proteins, Bap1, Atr-I, and Leuc-a from Bothrops asper, B. atrox, 
and B. leucurus, respectively. The overlapping positions between black and colored lines represent successful 
predictions, while overlapping between colored lines indicates a cross-reaction.

Atr-I Leuc-a Bap1

Atr-I 100 50.5 55.45

Leuc-a 50.5 100 78.22

Bap1 55.45 78.22 100

Table 2.  Clustal Omega Identity matrix between metalloproteinases.
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To overcome these limitations, we increased the negative/positive examples for epitopes by separating the full 
sequence into Kmers of several lengths (3 to 15 aa) and by correcting the proportions with SMOTE, thus increas-
ing overall performance (Table 4).

Start Sequence End

A Computationally predicted epitopes

Atroxlysine-I uniprot P85420

4 QQR 6

11 FIVVDHGMF 19

27 DKIRRRIH 34

78 FGEWR 82

126 IQDHSEQDLM 135

152 HDTG 155

164 CIMS 167

179 SDCS 182

Bap uniprot P83512

13 VVADHG 18

39 NTVGF 44

49 DVHA 52

77 KSFGEWRERD 86

161 GAKSCIMAS 169

176 SYEFSDCSQNQYE 188

Leucurolysin uniprot P84907

11 VVADHGMFKKYN 24

38 NTVNGFFRSMN 48

78 FGEWRER 84

114 AGMCDLSQSVAVVMDHS 130

147 NLGMRHDGNQCHCNAPSCIMAD 168

176 FEFSDCSQ 183

B Experimentally mapped epitopes

Atroxlysine-I uniprot P85420

19 FMKYNGNSDKIRRRIHQMVNI 39

46 TMYIDILLTGVEIWSNKDLINVQPAAPQTL 75

C Cross reactive regions

Atroxlysine-I uniprot P85420

78 FGEWRKTDLLN 88

137 AITMAHELGHN 147

163 SCIMSPVL 167

Table 3.  Epitopes discovered computationally (A), experimentally (B) and cross reactive regions (C).

Method AUC Accuracy TPR FPR Precision Specificity

Default software cutoff statistics

ABCpred 0,5382 0,4384 0,6516 0,5752 0,0906 0,4248

Bepipred 0,4450 0,5655 0,2860 0,3961 0,1356 0,6039

Labimq 0,5407 0,6175 0,4080 0,3266 0,2333 0,6734

TEPRF 0,5297 0,4972 0,5714 0,5121 0,1097 0,4879

Cutoffs that maximize precision

ABCpred 0,5525 0,5116 0,6275 0,5224 0,2041 0,4776

Bepipred 0,4825 0,5556 0,3976 0,4326 0,2117 0,5674

Labimq 0,5996 0,7210 0,4052 0,2059 0,3157 0,7941

TEPRF 0,5878 0,3790 0,9896 0,8140 0,2407 0,1860

Cutoffs that maximize Area Under the Curve

ABCpred 0,6542 0,6722 0,6617 0,3534 0,1255 0,6466

Bepipred 0,5499 0,6650 0,3799 0,2802 0,1443 0,7198

Labimq 0,6306 0,7876 0,4189 0,1577 0,2852 0,8423

TEPRF 0,6330 0,4912 0,8464 0,5805 0,1742 0,4195

Table 4.  Comparison statistics of computational B-cell epitope prediction method.
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A major point poorly discussed in the literature is that experimental nonepitopes are classified as false posi-
tives and are employed as such by predictors30. We demonstrated that one of these epitopes predicted and exper-
imentally mapped as a negative epitope (CPEN) was able to induce neutralizing antibodies (Figs 3 and 4). This 
finding also means that statistical comparisons for the current classification methods harbor a bias that signifi-
cantly alters the accuracy of current predictors. This bias could be due to variation in immunological or experi-
mental conditions. Continuous epitopes are powerful diagnostic/treatment tools, despite representing only 10% 
of all estimated B-cell epitopes14,44,45.

The low accuracy seen during prediction validation across the different algorithms could be due to the statisti-
cal bias caused by incomplete experimental results or database failure. Most amino acids identified as epitopes in 
silico by us were in the proximity of (or were partially included in) experimental epitopes (Fig. 2). This is impor-
tant because linear epitope sequences can be rapidly produced as soluble peptides for immunization1,29. These 
peptides are flexible34 and have a higher probability of mimicking epitopes46. Peptides designed on the basis of 
these epitopes are undoubtedly powerful tools for improving vaccine efficacy38,47.

This study was focused on the snake venom metalloendopeptidase called Atroxlysin-I as a candidate protein 
for our experiments because it is a well-characterized enzyme. It can enzymatically cleave Xaa-Leu bonds in 
proteins such as fibrin, fibronectin, type I and IV collagens, and other extracellular-matrix components and can 
induce hemorrhage. Besides, Atr-I interferes with platelet aggregation in an enzymatically independent manner1.

Of note, in this study, it was shown that a predicted epitope for Atr-I (AtrCPEN), not identified by experimen-
tal mapping, can be employed to induce neutralizing antibodies. The region identified (aa 11–19) was expanded 
to aa 8–22 for synthesis purposes; this approach non significantly reduced the score of our model from 0.6 to 
0.5, whereas any sequence with a score above 0.2 was regarded as an epitope (Fig. 2). The sequence chosen to 
represent a negative prediction had a score of zero, and it was not recognized by experimental procedures. Both 
peptides induced antibody production with a lower response to Atr-I than its corresponding anti-Atr-I sera 
(Fig. 3). The lower response associated with peptide-based antibodies has been observed previously14. Atr-I was 

Figure 3.  ELISA tests of anti-CPEN, CNEN, and Atr-I sera. (A–C) show the boxplots results for ELISA plates 
coated individually by CPEN, CNEN, and Atr-I, respectively. |Plates were incubated for 1 h with the respective 
sera at 37 °C followed by another round of 3× washing before incubation with a respective secondary antibody 
for 1 h. An OPD substrate was added for ~20 minute incubation, and the reaction was stopped with H2SO4 prior 
plate reading. The black lines within the boxes correspond to medians. All the samples marked with (*) show to 
be significantly different for a p < 0.05, when comparing by the t test available in software R. (D) shows antibody 
binding over 9 doses (x-axis represents days).
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experimentally found to contain two immunogenic regions in the regions aa 19–39 and aa 46–75, as identi-
fied with anti-Atr-I serum obtained elsewhere48. Our prediction match region (positions 27–34) is similar to 
BepiPred’s (positions 23 to 29) (data not shown), which are closer to the border of the experimentally identified 
region48. TEPRF and ABCpred select larger protein portions, reflected in a higher false positive rate (Table 4). The 
experimental epitopes found in Leuc-a, Bap1, and Atr-I contain a common region between residues 28 and 39 
(Atr-I), while the two peaks for Atr-I: one, for Bap-1, and the other for Leuc-a, are encapsulated between positions 
19 and 64.

The Atr-I structural model revealed that anti-Atr-I sera recognize two regions near the N-terminal portion 
of Atr-I (Fig. 5). All three analyzed endopeptidases had epitopes located in the region comprised by the first and 
second sequence portion close to the N-terminal amino acid, as shown by orange, blue, and green color peaks 
(Fig. 2). This region comprises two α-helices with a loop in between, followed by another loop and a strand. These 
helix-loop regions were shown to be immunoreactive with anti-Atr-I sera and with cross-reactive sera as well 
(Fig. 5). The preference of anti-Bap1 sera matched our predictions as well on the first helix-loop with residues 
19–39. This structure seems to be conserved among all metalloendopeptidases and could be a source for the 
development of additional antivenom agents and vaccines against other toxic endopeptidases. This region was 
erroneously labeled as an experimentally negative region, but we presented evidence to the contrary, and we were 
able to neutralize the hemorrhagic effect of Atr-I (Fig. 4). The impact of this approach during epitope predictions 
is clear, and some regions erroneously classified by experimental methods can harbor immunogenic properties 
(Fig. 2). The other two regions next to aa 65–75 may point to another region that was immunodominant for 
anti-Leuc-a sera whereas anti-Bap1 showed a preference for a region close to the C-terminal Atr-I segment. 
These untested regions may be important for other endopeptidases owing to their cross-reactivity and structural 
identity.

Figure 4.  Hemorrhagic Atr-I activity neutralization in vivo. Mice were challenged with 1 MHD (Minimal 
Hemorrhage Dose) of Atr-I diluted either in PBS (A) anti-CNEN serum (B) preimmune serum (4C) or anti-
CPEN serum (D). Black circles indicate hemorrhagic areas in animal skin, for each treatment. (A–C) showed a 
clear hemorrhage area, while serum against CPEN (shown in D) was able to reduce hemorrhage, causing only 
skin irritation.
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An immunogenic region depends on the system where it is identified and on the parameters of this sys-
tem49, such as the immunized host type, antigen type, inoculation method, adjuvant presence, and others50. These 
epitopes can be refined for vaccination51 and their biotechnological applications are well known1,29. Several com-
putational methods are available32, and their results are in agreement within consequences of certain conditions, 
in which amino acids, hydropathy values, and others are relevant for immunodominance49. These properties 
escalate to form complex networks and energetic mechanics52 thus making the task of predicting B-cell epitopes 
a major challenge32. Computational and experimental methods suggest that regions helix-loop, sheet-loop, 
helix-loop-helix, and helix-loop-sheet are the most likely to result in epitopes, binding, and therefore detection 
and neutralization of a target protein53. Besides, this study showed an improvement in epitope prediction accu-
racy by revealing a specific approach to the still complicated task of predicting neutralizing epitopes and vaccine 
targets.

Conclusion
This work describes development of a classification model based on a protein dataset that belongs to a single anti-
gen class (metalloendopeptidases), but the method can be applied to any protein class. This model successfully 
predicted linear epitopes that overlap with experimentally determined epitopes on three sample proteins, with 
better performance than ABCpred, BepiPred, and TEPRF. We also determined which biochemical attributes are 
important during epitope prediction for this model. Furthermore, antisera raised against these epitope regions 
were demonstrated to be cross-reactive and will improve the understanding of the immunoreactive regions in 
metalloendopeptidases. Furthermore, we produced neutralizing antibodies against Atroxlysin-I through immu-
nization with a synthetic peptide. The selected region was based on a predicted positive but experimentally nega-
tive epitope. Therefore, it was demonstrated here that computationally positive predictions can serve as a basis for 
producing peptides capable of raising neutralizing antibodies.

Methods
Ethics statement.  The study protocol was approved by the Ethics Committee for Animal Experimentation, 
Universidade Federal de Minas Gerais (protocol number 200/2010). All the experiments were performed in 
accordance with Guide for the Care and Use of Laboratory Animals, US National Institutes of Health (NIH 
Publication No. 85-23, revised 1996).

Figure 5.  Localization of predicted epitopes in the Atr-I model. A cartoon view of the structural model of 
the protein Atr-I is displayed. The residues that belong to the computational prediction are shown in pink (A) 
while the experimental epitopes and the cross-reactive regions between the different serum samples tested 
are indicated in blue (anti-Atr1) and orange respectively (anti-Bap1 and anti-Leuc-a) (B,C). The overlap of 
these methods is presented in (D) where the black regions correspond to the matching computational and 
experimental predictions.
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Animals and venoms.  The animals were maintained at Centro de Bioterismo and received water and 
food under controlled environmental conditions (Instituto de Ciências Biológicas, Universidade Federal de 
Minas Gerais, Brazil). A venom pool from at least six adult Peruvian B. atrox specimens was donated by the 
Instituto Nacional de Salud (Lima, Peru). Purified Atr-I was previously obtained in our laboratory, as previously 
described1,9, ICB-UFMG.

Dataset.  The B-cell epitope dataset (Rong and Jianjun, 2011), was used and modified, as previously by us 
elsewhere23. Briefly, this dataset contains manually curated and selected metalloendopeptidases based on the 
experimental validation procedures as described (Supplementary Data 1).

Attribute matrix analysis.  We produced a matrix based on the properties of Kmers between 3 and 15 
aa derived from every protein and epitope in our dataset. The Kmer sizes were chosen according to a common 
epitope size distribution54. The attributes are the percentages of each of the 20 aa; sequence lengths; hydropathy 
index; atom percentages of C, H, O, N, and S; the aliphatic chain size index; isoelectric point; and amino acid 
percentages grouped by hydrophobic, positive, negative, polar, and special amino acids (CGP).

The Kmers were tagged as an epitope or nonepitope if they had 50% or more aa that belonged to the respec-
tive class. The attributes were computed by a Biopython package for Python55 and Perl scripts based on Expasy 
descriptions (Wilkins MR., et al. (1999)). We selected a decision tree model as a data-mining technique for clas-
sifying the Kmers according to their attributes. We also chose the ClustalO56 local alignment option for aligning 
the metalloendopeptidases Bap1 (B. asper), Leuc-a (B. leucurus), and Atr-I (B. atrox).

Classification of computational epitopes.  The decision tree classifier tends to overpredict the majority 
class. To avoid this bias, the positive and negative sequence proportion was altered by means of the SMOTE algo-
rithm57 for over-representing the minority class and improving the performance of decision tree models.

A classification model series was tested using KNIME58. The decision tree was selected as the most suita-
ble method because of speed and performance23. The important attributes were compared with two measures 
(decreased Gini and accuracy) produced by randomForest Package on R, after a million trees produced by means 
of the same attributes as in our decision tree model. These measures are defined as inequity and inclusion meas-
ures, respectively.

Statistical validation.  Statistical analysis was carried out in R59, as described elsewhere23 and included 
10-fold cross-validation (Krstajic., et al. (2003)). This classification model performance was studied by analyzing 
a receiver operating characteristic (ROC) curve17, recall, precision, specificity, area under the curve (AUC), and 
Cohen’s Kappa coefficient39. Mean comparisons between experimental and computational results were conducted 
by the t test available in the R software.

Cellulose-bound peptide production and immunoassay.  Briefly, A Multipep (Intavis) robot was 
used for automating peptide synthesis of overlapping pentadecapeptides frame-shifted by 3 residues covering 
the entire amino acid sequence of Atr-I, Leuc-a, and Bap1 on cellulose membranes. Later, these membranes were 
tested against specific serum samples, as previously described by us26,27,48.

Soluble peptide synthesis.  Fmoc amino acids were acquired from Novabiochem or Sigma Aldrich. 
After epitope prediction, two linear regions were selected for synthesis. The first region was localized near the 
N-terminal region of Atr-I (11-FIVVDHGMF-19). We increased the predicted sequence by 3 aa for each border, 
resulting in a final sequence of 15 aa with composition 9-VDLFIVVDHGMFMKY-23 (AtrCPEN). A second 
region is localized in the central part of the protein 99-LTSTDFNGPTIGLAY-113 (AtrCNEN). AtrCNEN was 
also 15 aa long and showed no previous immunological response and was undetectable by the computational 
methods tested in this study. The two peptides were synthesized by the Fmoc chemistry method on an automatic 
Multiprep robot (Intavis)60. During the synthesis, the growing peptide was immobilized on the Rink Amide resin 
(Novabiochem). At the end of the synthesis, peptides were released from the resin, and the side chain deprotec-
tion was carried out by trifluoroacetic acid treatment (95% TFA, 2.5% triisopropylsilane, and 2.5% water). The 
molecular masses of synthesis products were analyzed by mass spectrometry (MALDI-TOF, linear mode).

Production antipeptide sera.  Two groups of five BALB/c female mice were immunized subcutaneously 
with AtrCNEN or AtrCPEN. Each peptide was encapsulated into Asolectin liposomes (Sigma Aldrich), as 
described by us elsewhere27. Aluminum hydroxide (40 μg/μL) was added in a 1:1 (v:w) ratio as an adjuvant. All 
animal groups received 10 doses during a 3-month protocol with the initial 1-month interval, followed by weekly 
doses. Experimental groups received 50 μg of an encapsulated peptide per dose per animal. Control animals were 
immunized with empty liposomes (without an antigen) in aluminum hydroxide (40 µg/µL). One week after the 
last immunization, the mice were bled to recover the immunized serum.

Antigenic anti-AtrCNEN and anti-AtrCPEN analysis by ELISA.  Recognition of the synthesized pep-
tides by BALB/c IgG anti-Atr-I antibody (previously produced and kindly donated by Sanchez et al.26) was tested 
in Maxisorp plates (Nunc) coated with AtrCNEN, AtrCPEN, (10 μg/mL), or Atr-I (5 μg/mL) overnight at 4 °C in 
coating buffer (0.05 M Na2CO3, pH 9.6). After blockage for 1 h at 37 °C with a powdered milk solution (2%) in 
PBS containing Tween 20 (0.1%), IgG Anti-Atr-I, AntiAtrCPEN, or AntiAtrCNEN produced in BALB/c mice 
was incubated for 1 hour at 37 °C. A goat anti-mouse IgG antibody conjugated to peroxidase (Sigma) served for 
detecting the reaction followed by addition of the OPD Peroxidase substrate (SIGMAFAST from Sigma-Aldrich).
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Methods for computational evaluation and comparison.  The immunoassay data from cellulose- 
bound peptides were employed for calculating a reactivity score for the three out-sample proteins uncharacter-
ized at the time (Bap1, Leuc-a, and Atr-I). The score is based on the aa occurrence numbers in each predicted 
overlapping reactive peptide and later was scaled to a maximum value of 1. These results were compared with our 
model, BepiPred, ABCpred, and TEPRF7,43.

Experimental validation.  The Atr-I protein and sera against Atr-I Leuc-a and Bap1 were used to experi-
mentally validate the classification model. We selected one region from Atr-I, considered immunogenic only by 
our predictor and a second region considered immunologically negative by all the tested mapping methods (i.e., 
computational and experimental). These two peptides were synthesized and used for producing antibodies and 
were later characterized. In addition, we compared the cross-reactivity of anti-Atr-I, anti-Bap1, and anti-Leuc-a 
sera (Kindly donated by Schneider, F. et al.61 against each sample protein. Immunoassays with cellulose-bound 
peptides were conducted. Besides, we compared these results to the predictions. Finally, all the comparisons 
between experimental and computational methods were expressed in accuracy, precision, recall, AUC, and ROC 
curves. Furthermore, we compared the epitope spatial distributions using a 3D model built with a combination 
of methods35,62,63.

An in vitro neutralization assay.  The FRET peptide (Abz-LVEALYQ-EDDnp) kindly donated by Schneider 
et al.61. was used to test the neutralizing activities of antiCPEN and antiCNEN after Abz-LVEALYQ-EDDnp hydrol-
ysis by purified Atr-I also donated by Schenider et al.61, 2016. First, 11 ng of Atr-I was preincubated with 1, 2, or 3 µg 
of antiCPEN or antiCNEN for 30 min at 37 °C. Then, the substrate was added at a final concentration of 47 mM. 
Positive controls were set up by preincubating Atr-I alone for 30 min at 37 °C. The residual activity and neutralizing 
activity were normalized to the positive control. Enzymatic activity was measured by fluorescence on a Sinergy2 
(Biotek) instrument (λex = 320 nm and λem = 420 nm) for 30 min at 37 °C as described by Schneider et al.61.

An in vivo neutralizing assay.  Atr-I–induced hemorrhage neutralization was tested in 16 BALB\c 
mice separated into groups of four. One minimum hemorrhagic dose (MHD/kg) of Atr-I (19 μg per mouse of 
18–22 g)48 was pre-incubated with 50 μL of either anti-AtrCNEN or anti-AtrCPEN sera for 1 hour at 37 °C. The 
mixtures were inoculated subcutaneously into four mice per group. As a positive control, Atr-I was injected alone 
(without antisera). The negative control involved preimmune sera. After 3 hours, the mice were euthanized and 
their skin was removed for evaluating hemorrhage.

Data Availability
All the data depicted in the figures are available upon request.
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