
1 CLINICAL CANCER RESEARCH | TRANSLATIONAL CANCER MECHANISMS AND THERAPY

2

3 Multi-omicsQ1 Analysis Reveals Immune Features
4 Associated with Immunotherapy Benefit in Patients with
5 Squamous Cell Lung Cancer from Phase III Lung-MAP
6 S1400I TrialQ2

7 Edwin Roger Parra1, Jiexin Zhang2, Dzifa Yawa Duose1, Edgar Gonzalez-Kozlova3,4,5,6, MaryW. Redman7,
8 Hong Chen8, Ganiraju C. Manyam2, Gayatri Kumar1, Jianhua Zhang9, Xingzhi Song9, Rossana Lazcano1,
9 Mario L. Marques-Piubelli1, Caddie Laberiano-Fernandez1, Frank Rojas1, Baili Zhang1, Len Taing10,
10 Aashna Jhaveri10, Jacob Geisberg10, Jennifer Altreuter10, Franziska Michor10, James Provencher10,
11 JoyceYu10, EthanCerami10, RadimMoravec11, Kasthuri Kannan1, Rajyalakshmi Luthra12, GheathAlatrash13,
12 Hsin-Hui Huang5,14, Hui Xie5, Manishkumar Patel15, Kai Nie5, Jocelyn Harris5, Kimberly Argueta5,
13 James Lindsay15, Roshni Biswas15, Stephen Van Nostrand10,15, Seunghee Kim-Schulze3,4,5,6,
14 Jhanelle E. Gray16, Roy Herbst17, Ignacio I. Wistuba1, Scott Gettinger16, Karen Kelly18,
15 Lyudmila Bazhenova19, Sacha Gnjatic3,4,5,6, J. Jack Lee20, Jianjun Zhang8,9, and Cara Haymaker1

ABSTRACT
◥

16 Purpose: Identifying molecular and immune features to guide
17 immune checkpoint inhibitor (ICI)-based regimens remains an
18 unmet clinical need.
19 Experimental Design: Tissue and longitudinal blood specimens
20 from phase III trial S1400I in patients with metastatic lung squa-
21 mous cell carcinoma (SqNSCLC Q5) treated with nivolumab mono-
22 therapy (nivo) or nivolumab plus ipilimumab (nivoþipi) were
23 subjected to multi-omics analyses including multiplex immunoflu-
24 orescence (mIF), nCounter PanCancer Immune Profiling Panel,
25 whole-exome sequencing, and Olink.
26 Results: Higher immune scores from immune gene expression
27 profiling or immune cell infiltration by mIF were associated with
28 response to ICIs and improved survival, except regulatory T cells,
29 which were associated with worse overall survival (OS) for patients
30 receiving nivoþipi. Immune cell density and closer proximity of
31 CD8þGZBþ T cells to malignant cells were associated with

32superior progression-free survival and OS. The cold immune
33landscape of NSCLC was associated with a higher level of chro-
34mosomal copy-number variation (CNV) burden. Patients with
35LRP1B-mutant tumors had a shorter survival than patients with
36LRP1B-wild-type tumors. Olink assays revealed soluble proteins
37such as LAMP3 increased in responders while IL6 and CXCL13
38increased in nonresponders. Upregulation of serum CXCL13,
39MMP12, CSF-1, and IL8 were associated with worse survival
40before radiologic progression.
41Conclusions: The frequency, distribution, and clustering of
42immune cells relative to malignant ones can impact ICI efficacy
43in patients with SqNSCLC. High CNV burden may contribute
44to the cold immune microenvironment. Soluble inflammation/
45immune-related proteins in the blood have the potential to
46monitor therapeutic benefit from ICI treatment in patients with
47SqNSCLC.
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50 Introduction
51 Immune checkpoint inhibitors (ICI) targeting programmed cell
52 death protein 1 (PD-1, e.g., nivolumab, pembrolizumab, cemiplimab)
53 or its ligand PD-L1 (e.g., atezolizumab) have become pillars of
54 treatment in both frontline and salvage settings for patients with
55 advanced non–small cell lung cancer (NSCLC; refs. 1–4). In addition,
56 recent efforts have led to multiple approved frontline regimens
57 incorporating chemotherapy and other ICIs with anti-PD-1/PD-L1
58 antibodies (5–8). However, in the salvage setting, anti-PD-1/PD-L1
59 monotherapy remains the treatment of choice for ICI-na€�ve advanced-
60 stage NSCLC (9, 10).
61 Ipilimumab is an ICI targeting CTL-associated protein 4 (CTLA-4).
62 Its dual inhibition with PD-1/PD-L1 may have synergistic effects on
63 the anticancer immune response, given the complementary functions
64 of these two pathways. The combination of nivolumab with ipilimu-
65 mab (nivoþipi) was demonstrated to have superior efficacy than
66 nivolumab alone in patients with advanced melanoma (11, 12). For
67 patients withmetastatic NSCLC, ipilimumab plus nivolumab has been
68 approved by the FDA in the frontline setting with or without con-
69 current chemotherapy (7, 8, 13, 14). In the salvage setting, a recent
70 phase III study, S1400I, evaluated the efficacy of nivoþipi versus
71 nivolumab monotherapy (nivo) in patients without previous ICI
72 treatment for squamous NSCLC (SqNSCLC; ref. 15). The study did
73 not show that ipilimumab plus nivolumab improved clinical out-
74 comes. However, progression-free survival (PFS) and overall survival
75 (OS) curves separated during later follow-up, suggesting that a subset
76 of patients may benefit from combination treatment with ipilimumab
77 and nivolumab.
78 Understanding themechanisms underlying response and resistance
79 to ICIs and establishing predictive molecular and immune features to
80 identify patients who will benefit the most from ICI therapy remain
81 unmet clinical needs. High PD-L1 expression is associated with
82 improved outcomes in patients receiving ICI monotherapy (1, 8).
83 However, the geographical heterogeneity of PD-L1 expression between
84 primary tumors and metastatic sites and even between different
85 regions within the same tumors—as well as the potential dynamic
86 changes in PD-L1 expression over time—have raised questions about

88its reliability as a predictive biomarker (16, 17). Although tumor
89mutational burden (TMB) has been approved as a predictive marker
90for anti-PD-1/PD-L1 treatment for melanoma and NSCLC, and
91several other cancer types (18), one study foundno correlationbetween
92TMB or PD-L1 with anti-PD-1 plus anti-CTLA-4 therapy in patients
93with NSCLC (19). Furthermore, the predictive value of PD-L1 and
94TMB becomes less clear when chemotherapy is added. These findings
95underscore the complexity of molecular determinates of the tumor
96immune microenvironment and response to ICIs.
97In this study, we sought to elucidate the immune and molecular
98mechanisms that affect benefit from ICIs in patients with advanced
99SqNSCLC. Toward this end, we integrated immune and multi-omics
100profiling platforms supported by Cancer Immune Monitoring and
101Analysis Centers (CIMAC) in the current study. Specifically, we
102performed multiplex immunofluorescence (mIF), gene expression
103profiling (ncounter PanCancer Immune Profiling Panel), whole-
104exome sequencing (WES), and Olink proteomics on tissue and blood
105specimens from the S1400I trial to identify molecular or immune
106factors associated with better prognoses in patients treated with anti-
107PD-1 monotherapy versus anti-PD-1/CTLA-4 dual combination.

108Material and Methods
109Study population and human tissue samples
110Lung-MAP (S1400I, NCT02785952) was a multicenter, open-label,
111phase III randomized clinical trial. The substudy Lung-MAP-I
112(S1400I) was conducted from December 18, 2015, to April 23,
1132018, through the National Clinical Trials Network and led by the
114SWOG Cancer Research Network. The study was conducted in
115accordance with the Declaration of Helsinki and the Lung-MAP
116design has been described previously (15). Briefly, the trial compared
117nivoþipi with nivo in patients with chemotherapy-pretreated, immu-
118notherapy-na€�ve, advanced sqNSCLC. Two hundred fifty-two patients
119were randomly assigned to receive nivoþipi (n ¼ 125) or nivo (n ¼
120127). The clinical efficacy endpoints were OS, PFS, duration of
121response, and best objective response by RECIST 1.1. Each site
122required approval by the U.S. NCI central Institutional Review Board
123or approval by their local Institutional Review Board. Written,
124informed consent was required for all patients prior to registration.
125Available tumor tissue samples and blood samples (N ¼ 160,
126Supplementary Fig. S1) submitted for Lung-MAP screening were
127provided by the SWOG tissue bank. The clinical information for
128correlative studies in collaboration with the CIMAC–Cancer Immu-
129nologic Data Commons (CIDC) Network is shown in Supplementary
130Table S1 across the different assays.

131mIF staining and analysis
132mIF staining was performed in 82 screening tumor tissue samples
133(nivoþipi¼ 38, and nivo¼ 42; Supplementary Table S1). Unstaining
134slides from formalin-fixed, paraffin-embedded (FFPE) tissue were
135received from the SWOG bank and stained using methods previously
136described and validated (20). Briefly, 4-mm-thick FFPE tumor sections
137were stained using an automated staining system (LeicaMicrosystems)
138and twomIF panels with the following antibodies: Panel 1, cytokeratin
139(CK), CD3, CD8, PD-1/PD-L1, andCD68 and Panel 2, CK, CD3, CD8,
140CD45RO, granzyme B (GZB), and FOXP3. Antibody clones, dilutions,
141and RRIDs are included in Supplementary Table S2 and have been
142described previously (20). All the markers were stained in sequence
143using their respective fluorophore contained in the Opal 7-Color
144Automation IHCKit (catalog no. NEL821001KT; Akoya Biosciences).
145The slides were scanned using the Vectra/Polaris 3.0.3 (Akoya

Translational Relevance

Identifying molecular and immune features to guide immune
checkpoint inhibitor (ICI) regimens remains an unmet clinical
need. We performed multi-omics analysis of biospecimens from a
phase III trial LUNG-MAP S1400I that compared ipilimumab
combined with nivolumab versus nivolumab monotherapy in
patients with metastatic lung squamous cell carcinoma. An overall
cold tumor immune microenvironment correlated with high chro-
mosomal copy-number variant burden and was associated with
inferior benefit from ICIs. In addition to the immune cell density,
the proximity and local neighborhood clustering of a subset of
immune cells to tumor cells also impacted the benefit from ICI
therapy. Interestingly, patient survival was decreased with LRP1B-
mutant tumors, but not with LRP1B-wild type tumors. Many
soluble proteins related to inflammation or T-cell and dendritic
cell activation correlated with clinical outcome from ICI therapy.
Together, these immune features highlight the potential of bio-
marker-based strategies to select patients for ICI-based regimens
and dynamically monitor their response.
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148 Biosciences) at lowmagnification, 10� (1.0 mm/pixel) through the full
149 emission spectrum and positive tonsil controls from the run staining to
150 calibrate the spectral image scanner protocol (21). A pathologist
151 selected representative areas inside the tumor using regions of interest
152 for scanning in high magnification by the Phenochart Software image
153 viewer 1.0.12 (931� 698 mm size at resolution 20�¼ 0.5 mm/pixel) to
154 capture various elements of tissue heterogeneity. Marker coexpression
155 was employed to identify malignant cells (CKþ), malignant cells
156 expressing PD-L1 (CKþPD-L1þ), and the cellular subsets of
157 tumor-associated immune cells (TAIC) listed in Supplementary
158 Table S3. Densities of each cell phenotype were quantified as the
159 number of cells/mm2 in the tumor compartment characterized by
160 group or nests of malignant cells, in the stroma compartment char-
161 acterized by the fibrous tissue present between the tumor nets, and in
162 both compartments described as a total. PD-L1þmalignant cells were
163 also expressed in percentages. The data were consolidated using R
164 studio 3.5.3 (Phenopter 0.2.2 packet; Akoya Biosciences).

165 Spatial point pattern distribution analysis
166 Using the point pattern distribution of the cell phenotypes relative
167 to malignant cells, we measured the distance from malignant cells
168 (CKþ) to TAICs included in each mIF panel using R studio 3.5.3
169 (Phenopter 0.2.2 packet). We applied the median nearest neighbor
170 function from malignant cells (CKþ) to different cell phenotypes to
171 determine where these TAICs were located; specifically, whether the
172 TAICs were close to (i.e., equal to or less than the median distance) or
173 far from (i.e., more than the median distance) the malignant cells
174 (CKþ) and associated with clinical outcomes.

175 Spatial organization of cells by type
176 Cells were subset by phenotype using the markers in the mIF panels
177 andexaminedas the following: Tumor/PD-L1þ (CKþPD-L1þ), Tumor
178 (CKþ), Other-Tcells (CD3þ), Other-Tcells/PD-1þ (CD3þPD-1þ),
179 Macrophages(CD68þ), Macrophages/PD-L1þ(CD68þPD-L1þ),
180 CTLs(CD3þCD8þ), CTLs/PD-1þ(CD3þCD8þPD-1þ), CTLs/GBþ
181 (CD3þCD8þGBþ), and Tregs (CD3þCD8�Foxp3þ). The above
182 phenotypes were used to visualize the spatial organization of cells by
183 type. This analysiswas carried out inRversion4.2.0 (R studio 2022.07.2).

184 Spatial neighborhood
185 Using the marked planar point pattern representations of each mIF
186 image, we calculated the spatially varying probabilities for each of the
187 phenotypes (described above). We used the spatstat toolbox (22)
188 which provides the relrisk function to identify areas of segregation
189 for a multitype (markers >2) marked point pattern. This function
190 estimates for each phenotype, the spatially varying probability or the
191 ratios of the probabilities, using kernel smoothing. The output of this
192 function was used to plot the contour of the spatially segregated
193 neighborhoods for each phenotype.

194 Identifying cell clusters in the local neighborhood
195 We identified cell clusters in each image using Euclidean distance
196 and a hierarchical clustering method. A minimum cluster size of 10
197 cells and distance ≤ 20 mm was the requirement for clustering. The
198 distance-based hierarchical clustering yielded the neighborhood
199 information in a matrix. The cells that did not form clusters were
200 labeled "Free_cell". The relative percentages of cells in each phe-
201 notype within a cluster were used to generate the heat map. We used
202 the SPIAT library (SPIAT version 1.0.4) to identify cell clusters and
203 made additions to the SPIAT functions as required for our analysis
204 using R version 4.2.0.

206NanoString gene expression profiling
207DNA and RNA were coextracted from FFPE specimens received
208from the SWOGbank (Supplementary Table S1) and subjected toWES
209and gene expression. TheRNA froma total of 38 FFPE samples (nivo¼
21023 and nivoþipi¼ 15) passed the quality control (QC) and was run on
211the nCounter platform using the PanCancer Immune Profiling Panel
212(730 immune-related and 40 housekeeping genes) per the manufac-
213turer’s instructions. Briefly, sampleswere hybridized overnight at 65�C
214to probes, excess probes were washed using the automated prep station
215and then imaged on the digital analyzer. All runs included a Human
216Reference RNA control for batch correction. Data were processed and
217normalized with NanoString’s nSolver analysis software (23). All
218samples passed the post-run QC metrics, and no batch effects were
219evident in the runs. In addition, gene expression profiles were decon-
220voluted by TIMER and nSolver advanced analysis tools to infer
221immune cells correlated to clinical outcomes.

222WES data analysis
223WES analysis was conducted using the CIDC WES pipeline on
224tumor DNA from 50 tumors (nivo ¼ 28 and nivoþipi ¼ 22, Supple-
225mentary Table S1) that passed the QC. DNA from paired peripheral
226blood mononuclear samples was used as germ line control. WES
227implements Gene Analysis Toolkit (24) best practices and identifies
228somatic variants using Sentieon TNScope and Haplotyper algo-
229rithms (25), respectively. Somatic variants are annotated using the
230Variant Effect Predictor software (26). The pipeline uses an ensemble
231of three callers, CNVkit (27), Sequenza (28), and Facets (29), to
232characterize tumor copy-number variation (CNV), and the CNV
233segments called by at least two callers were used to generate a high-
234confident consensus set. Sequenza and FACETS were used to estimate
235tumor purity and also PyClone-VI was utilized to infer clonal status of
236mutations (30). PyClone v 0.13.1 (31) was used to perform mutation
237clonality analysis. It is a Bayesian clustering method that enables
238mutations to be grouped into putative clonal clusters by integrating
239copy number, tumor purity (obtained from Sequenza), and variant
240allele frequency data.

241Olink serum soluble analyte assay
242We performed circulating serum analyte measurements using
243proximity extension assay (Olink) in 561 serum samples collected
244longitudinally from 160 patients (Supplementary Table S1). A series of
24592 proteins, such as cytokines and soluble immune checkpoints
246included in the “immuno-oncology” panel, wasmeasured as described
247previously (32). Protein levels were normalized using internal positive
248and negative controls and quantified as log2 protein expressions
249(NPX), which were subsequently used as input for downstream
250analysis.

251Correlative analysis and statistical methods
252To evaluate whether the baseline biomarkers are prognostically
253associated with survival, we dichotomized biomarker data by the
254median and performed univariate survival analysis with the log-
255rank test. OS and PFS were evaluated. The Cox proportional hazards
256regression model was used for multivariate survival analysis (R
257package Survival, https://CRAN.R-project.org/package¼survival;
258ref. 33). We included TMB (≥10 or <10 mutations per Mb), PD-L1
259(≥5 or <5%), and other statistically significant biomarkers identified
260from univariate analysis in Cox models. Thresholds for TMB and PD-
261L1 were determined from previous clinical studies (18). To assess
262whether continuous biomarker data are associated with response and
263other clinical variables, we used nonparametric tests: Spearman rank
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266 correlation for continuous clinical variables,Mann–WhitneyU test for
267 categorical clinical variables with two groups, and Kruskal–Wallis test
268 for categorical variables withmore than two groups. In parallel, we also
269 dichotomized biomarker data and used the x2 test for a robust
270 assessment with responders. The Benjamini-Hochberg method (34)
271 was used for multiple testing adjustment of P values. The analysis was
272 performed on all samples and on samples in two treatment arms
273 separately.
274 To explore the association of each baseline protein level with clinical
275 outcomes from the Olink data, we used logistic regression models
276 for best objective response and Cox proportional hazards models
277 for PFS and OS (R package Survival, https://CRAN.R-project.org/
278 package¼survival, RRID: SCR_021137; ref. 33). In separate regression
279 models, univariate analyses included only the protein expression
280 values, while the multiple variable analyses adjusted for additional
281 covariates (i.e., treatment, age, sex, race, smoking). Then, to investigate
282 the longitudinal changes in serum protein associated with treatment,
283 we usedmixed linear models (R package Dream and lme4; refs. 35, 36)
284 and the timepoints baseline, cycle 2 week 3, cycle 4 week 7, and cycle
285 5week 9 to quantify the effect of these variables and additional relevant
286 clinical parameters. These were analyzed with the treatment arms
287 nivoþipi and nivo. In ourmodels, eachproteinNPXwas considered an
288 independent variable. In contrast, phase, timepoints, and treatments
289 were considered dependent variables and other covariates as random
290 effects. This approach allowed us to quantify the variance across
291 proteins and approximate degrees of freedom of the hypothesis test
292 for each protein, thereby minimizing false-positive results. We used F-
293 tests for multiple coefficient comparisons and moderate t tests for
294 single coefficient comparisons.
295 To identify the differences between responders and nonresponders
296 at each timepoint and longitudinally, we used time as a dependent
297 variable. We jointly modeled survival with cytokine expression [R
298 packages lme4, rstanarm: Bayesian applied regression modeling via
299 Stan (RRID:SCR_024605), bayestestR, bayesplot: Plotting for Bayesian
300 Models (https://mc-stan.org/bayesplot/, RRID: SCR_024588] (36, 37)
301 to investigate the association of longitudinal protein levels with
302 survival outcomes. The model used Cox proportional hazards and
303 liner mixed regression and assessed the association of dynamic
304 biomarker changes with survival outcomes. In the random intercept,
305 the independent variable was the number of months from baseline to
306 biomarker collection, set as a natural spline with three knots (at most
307 three changing timepoints between baseline and progression/death).
308 The dependent variable was the Olink analyte NPX value. In the
309 survival analysis component, the independent variable includes the
310 treatment arms. The convergence of the Markov chain Monte Carlo
311 samples was assessed using several diagnostics: potential scale reduc-
312 tion factor, autocorrelation and trace plots, adequate sample size, and
313 Monte Carlo standard error (32, 38–40). Finally, we used the FDR as
314 the preferred method to correct for multiple hypothesis testing. The
315 thresholds for significance in the mixed linear models for differential
316 expression tests were a log2 fold change of at least 0.5 and an FDR <
317 0.05. The joint model’s threshold for significance was at least 1 unit
318 increase in log2 NPX expression and FDR < 0.05.
319 For integrative analysis, we applied recursive partitioning tree
320 analysis (RPART, rpart library in R, https://cran.r-project.org/web/
321 packages/rpart/vignettes/longintro.pdf)andrandomforest (refs.41,42;
322 RF, randomForest and randomForestSRC libraries in R) on Olink
323 (N ¼ 159) and mIF (N ¼ 82) data. We fitted RPART tree using
324 responder status as the dependent variable, 92 baseline level Olink
325 proteins and 17 mIF markers as predictors. We also created decision
326 tree survival prediction model. Separate RPART trees were fitted for

328mIF markers from different compartments along with Olink proteins.
329Theminimumnumber of observations in a node for a split was set to be
33015; 10-fold cross-validation was carried out and results used for tree-
331pruning. For RF, we used 81 samples with both Olink and mIF data.
332Bootstrap the data to create bootstrap samples; grow a survival tree for
333each bootstrap sample with split criteria based on the log-rank
334statistics; continue the recursive partition; and calculate importance
335of each predictor by averaging over the forest.

336Data availability
337In conjunction with the clinical study principal investigator/chair,
338the NCI-sponsored network and CIDC, we will make available dei-
339dentified data publicly available by request under the dbGaP PHS
340accession number: phs003412.v1.p1. Questions and requests for addi-
341tional data can be directed to the corresponding author.

342Results
343Clinical characteristics
344There were 31 responders (19.4%), including complete responses,
345partial responses, and unconfirmed partial/complete response; 63
346patients with stable disease (39.4%); and 61 patients (38.1%) with
347progressive disease (i.e., increasing disease and symptomatic deteri-
348oration). Overall, 31 patients (19.4%) were alive at the end of the study,
349and the median OS was 10.02 months (range: 0.3–40.3). One hundred
350and forty-eight patients (92.5%) had disease progression, with a
351median PFS of 3.4 months (range: 0.3–36.6; Supplementary Table S1).

352An active immune infiltration is associated with benefit from ICI
353treatment
354We first analyzed the mIF and gene expression profiling data from
355baseline tissue samples taken before ICI treatment to identify immune
356features associated with clinical benefit. mIF data revealed higher
357densities of various immune cells in the stroma compartment com-
358pared with the tumor compartment across the whole cohort (nivoþipi
359and nivo arms), with no significant differences between the nivoþipi
360and nivo arms (Supplementary Table S4). The overall immune cell
361densities were higher in the responders across both arms, although
362the difference did not reach statistical significance. In the whole
363cohort, higher median densities of PD-1þ cytotoxic T cells (CTL;
364CD3þCD8þPD-1þ) in the stroma (>4.1 cells/mm2, P ¼ 0.042),
365presence of GZBþ CTLs in the tumor compartment (>0 cells/mm2,
366P ¼ 0.011), and higher median densities of memory T cells
367(CD3þCD45ROþ; >23.4 cells/mm2, P ¼ 0.041) and PD-1þ T cells
368(CD3þPD-1þ; >16.0 cells/mm2, P¼ 0.023) in the total compartment
369(tumor plus stroma) were associated with longer PFS (Supplementary
370Table S5). Similarly, transcriptomic analysis demonstrated that
371patients having tumors with a higher expression of genes associated
372withmyeloid infiltration, immune recruitment, and inflammation had
373superior clinical outcomes in the whole cohort (Table 1; Supplemen-
374tary Table S6). The associations between higher expression of CD163,
375BLNK, IRF1, FCGR2Awith better OS (P < 0.05) and higher expression
376of MAPK11 with worse OS remained significant in subsequent
377multivariate analyses after adjustments for known predictive biomar-
378kers, including TMB and PD-L1.
379In the nivo arm, higher densities of memory T cells
380(CD3þCD45ROþ) in the total compartment (median> 24.6 cells/mm2,
381P ¼ 0.028) and memory/regulatory T cells (Treg; CD3þCD8-
382CD45ROþFOXP3þ) in the total compartment (median> 4.6 cells/mm2,
383P < 0.001) and the stroma compartment (median > 12.0 cells/mm2,
384P ¼ 0.049) were associated with longer PFS (Table 2; Fig. 1A and B).
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387 Higher densities ofmemory/Tregs (CD3þCD8�CD45ROþFOXP3þ)
388 in the total compartment (median > 4.6 cells/mm2, P ¼ 0.026) were
389 associatedwithbetterOS (Table2;Fig. 1C). In thenivoþipi arm, higher
390 densities of PD-1þ T cells (CD3þPD-1þ) in the total compartment
391 (median > 16.0 cells/mm2, P ¼ 0.0347) and the presence of GZMþ
392 CTLs (CD3þCD8þGZBþ) in the tumor compartment (>0 cells/mm2,
393 P¼ 0.0154) were associated with longer PFS (Table 2; Fig. 1D and E).
394 Conversely, higher densities of Tregs (CD3þCD8�FOXP3þ) in the
395 total compartment (median > 12.4 cells/mm2, P ¼ 0.0418) were
396 associated with worse OS (Table 2; Fig. 1F). In the nivoþipi arm,
397 deconvolution of transcriptomic profiling data by TIMER and nSolver
398 demonstrated significantly higher total immune cells (CD45þ), a
399 higher exhausted CD8þ T-cell score, and a higher neutrophil score
400 in responders versus nonresponders (P < 0.05, Fig. 1G–I), further
401 supporting that overall higher immune infiltration is associated with
402 superior clinical benefit from ICI treatment.

404High infiltration of CTLs is associatedwith exceptional response
405to ICIs
406Next, we specifically investigated exceptional responders, defined as
407patients who had no progression for at least 18 months and were still
408alive by 24 months, versus early progressors, who survived more than
4091 month but had progressive disease and died within 6 months after
410initiating ICI treatment. By these definitions, there were 11 exceptional
411responders and 44 early progressors across the total trial cohort
412(Fig. 2A). There were more exceptional responders in the nivoþipi
413arm than in the nivo arm (7 of 73 vs. 4 of 87, P ¼ 0.35). Among these
414patients, 8 exceptional responders and 21 early progressors had tissues
415available formIF, and 6 exceptional responders and 8 early progressors
416had tissues available for gene expression analysis.
417By mIF, we observed higher densities of CTLs (CD3þCD8þ) and
418memory CTLs (CD3þCD8þCD45ROþ) in the total compartment in
419exceptional responders than in early progressors (CTLs: median,
420152.1 vs. 27.3 cells/mm2; P ¼ 0.032; memory CTLs: median, 31.2 vs.
4212.1 cells/mm2; P ¼ 0.040; Supplementary Table S7). Representative
422images from an exceptional responder are shown in Fig. 2B and C.
423Moreover, in the tumor compartment, we observed higher densities of
424GZBþCTLs (CD3þCD8þGZBþ) in the exceptional responders than
425the early progressors (median, 3.6 vs. 0 cells/mm2, P¼ 0.027; Fig. 2D).
426Representative images from an early progressor showing a lower
427density of immune infiltration are shown in Fig. 2E and F.
428Furthermore, distinctive spatial neighborhoods and cell organiza-
429tion in tumor microenvironment (TME) were observed in exceptional
430responders (n ¼ 6) relative to early progressors (n ¼ 6; Fig. 2G–J;
431Supplementary Figs. S2 and S3). Shown in Fig. 2G; Supplementary
432Figs. 2A and 3A is the distribution of different cell subsets relative to
433each other, with higher immune infiltration and higher CTL densities
434in the TME of exceptional responders versus early progressors. We
435then used spatially varying probabilities of different cell phenotypes to
436determine the segregation among immune subsets andmalignant cells,
437and a contour plot to represent the neighborhoods within the TMEs.
438These analyses revealed a higher spatial segregation of immune cell
439subsets relative tomalignant cells in the early progressors as compared
440with the exceptional responders (Fig. 2H; Supplementary Figs. S2B
441and S3B) in line with above observation that higher densities of CTLs
442in the tumor region positively associated with survival. Through
443distance-based hierarchical clustering, we identified local cell clusters
444within the TME and observed distinct compositions in exceptional
445responders versus early progressors. The clusters (cells ≥ 10 within
446interacting distance 20 mm) in exceptional responders often consisted
447of CTLs and other T-cell populations in the proximity to tumor cells
448(Fig. 2I and J; Supplementary Figs. S2C, S2D, S3C, and S3D). Finally,
449infiltration of neutrophils inferred from gene expression profiling data
450was significantly higher in exceptional responders than early progres-
451sors (P ¼ 0.029; Supplementary Fig. S4).

Table 1. Associations of genes with outcomes by arm using
NanoString.Q6

Arm Gene Outcome HR CI P

nivo FADD OS 3.63 1.32–9.93 0.002
CLEC4C OS 3.06 1.16–8.09 0.009
DNAJC14 OS 2.96 1.13–7.79 0.010
CREB5 PFS 4.04 1.41–11.56 <0.001
FADD PFS 2.79 1.08–7.19 0.007
IL19 PFS 2.65 1.04–6.75 0.009
PIN1 PFS 0.36 0.15–0.90 0.005

nivoþipi CCL22 OS 4.26 1.16–15.66 0.006
CD163 OS 0.21 0.06–0.71 0.007
CXCL10 OS 0.22 0.06–0.74 0.009
CXCL11 OS 0.22 0.06–0.74 0.009
IFI27 OS 0.22 0.07–0.76 0.010
ITGB3 OS 0.17 0.05–0.62 0.002
MAPK11 OS 4.48 1.20–16.68 0.004
MAPK8 OS 0.19 0.06–0.67 0.004
C1R PFS 0.22 0.07–0.75 0.010
C1S PFS 0.21 0.06–0.71 0.007
CD163 PFS 0.18 0.05–0.64 0.002
ETS1 PFS 0.19 0.06–0.67 0.004
FCGR2A PFS 0.20 0.06–0.69 0.004
IL15RA PFS 0.22 0.07–0.75 0.010
IL32 PFS 0.19 0.06–0.67 0.004
ITGB3 PFS 0.17 0.05–0.60 0.001
MAPK8 PFS 0.20 0.06–0.71 0.006
PRKCD PFS 0.19 0.05–0.66 0.004
STAT2 PFS 0.22 0.06–0.74 0.009

Abbreviations: nivo, nivolumab; nivoþipi, nivolumab plus ipilimumab; OS, over-
all survival; PFS, progression-free survival.

Table 2. Associations between cell phenotypes by compartment and by treatment arm.

Arm Compartment Cell phenotype Outcome HR CI P

nivoþipi Tumor CD3þCD8þGZBþ PFS 0.38 0.18–0.81 0.015
Total CD3þCD8-FOXP3þ OS 2.33 0.99–5.51 0.042

CD3þPD-1þ PFS 0.45 0.21–0.97 0.035
nivo Stroma CD3þCD45ROþFOXP3þ PFS 0.58 0.32–1.05 0.049

Total CD3þCD45ROþ PFS 0.55 0.31–1.00 0.028
CD3þCD45ROþFOXP3þ OS 0.52 0.28–0.96 0.026
CD3þCD45ROþFOXP3þ PFS 0.42 0.23–0.78 <0.001

Abbreviations: nivo, nivolumab; nivoþipi, nivolumab plus ipilimumab; GZB, granzyme B; Total, tumor plus stroma; PFS, progression-free survival.
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454 Close proximity of T cells and malignant cells is associated with
455 benefit from ICIs
456 Given the recognized importance of distance between different cells
457 and the clustering of CTLs and tumor cells observed in exceptional

459responders, we expanded our analysis to understand the spatial
460relationship between the cell types associated with clinical outcome
461described above with other cells within the TME (43, 44). In the
462whole cohort, shorter distances from malignant cells (CKþ) as well as

Figure 1.

Kaplan–Meier survival curves of cellular densities and immune signatures. In the nivo arm, Kaplan–Meier survival curves show high cellular densities (>the median
value used as cutoff) of memory T cells (CD3þCD45ROþ; A) in the total compartment and CD45ROþ Tregs (CD3þCD45ROþFOXP3þ; B) in the stroma
compartment were associated with better PFS. C, CD45ROþ Tregs (CD3þCD45ROþFOXP3þ) in the total compartment were associated with better OS.
Representativemultispectral images show lowandhigh cell phenotypedensities forA–C. In the nivoþipi arm, theKaplan–Meier survival curves show that high cellular
densities of PD-1þ T cells (CD3þPD-1þ; D) in the total compartment and GZBþ CTLs (CD3þCD8þGZBþ; E) in the total compartment were associated with better
PFS. Conversely, (F) Tregs (CD3þCD8�FOXP3þ) in the total compartment were associated with poor OS. Representative multispectral images show low and high
cell phenotype densities for D–F. Cell scoring derived from gene expression profiling using nSolver shows higher scores for CD45þ immune cells (G), CD8þ T cells
(H), and neutrophils (I) in responders compared with nonresponders in the nivoþipi arm.Q7
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Figure 2.

Immune infiltration in exceptional responders and early progression across the arms. A, The upper level of the event chart shows the exceptional responders, and
the lower level shows the early progression/death group. The solid red circles represent deaths in theOS analysis, the open red circles indicateOS-censored patients,
the solid blue triangles indicate progression in the PFS analysis, the open blue open triangles indicate PFS-censored patients, and the violet X indicates the time to
the first response. (Continued on the following page.)
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465 PD-L1þmalignant cells (CKþPD-L1þ) to CTLs (CD3þCD8þ; medi-
466 an, 139 and 148 mm) were associated with better PFS (P ¼ 0.045 and
467 P ¼ 0.027, respectively); and shorter distances from malignant cells
468 (CKþ) to GZBþ CTLs (CD3þCD8þGZBþ) were associated with
469 significantly longer PFS (P ¼ 0.035) and a trend toward longer OS
470 (P¼ 0.054; Fig. 3A–E). In the nivoþipi arm, shorter distances of CTLs
471 (CD3þCD8þ) as well as GZBþ CTLs (CD3þCD8þGZBþ) from
472 malignant cells (CKþ; P ¼ 0.045 and, P ¼ 0.026, respectively) and
473 shorter distances between CTLs (CD3þCD8þ) from PD-L1þ malig-
474 nant cells (CKþPD-L1þ; P ¼ 0.033) were associated with longer
475 PFS (Fig. 3F–H). In addition, shorter distances of GZBþ CTLs
476 (CD3þCD8þGZBþ; median, 245 mm) from malignant cells (CKþ)
477 were associated with longer OS (P ¼ 0.045; Fig. 3I). Taken together,
478 these results suggest that the immune cells’ density and spatial distri-
479 bution may impact response to ICI therapy.

480 High CNV burden is associated with cold immune infiltration
481 We next performed WES (n ¼ 50) with the intent of identifying the
482 genomic basis underlying the immune features associated with benefit
483 fromnivoþipi versus nivo in thesemetastatic squamous cell carcinomas.
484 A total of 30,081 nonsilent mutations were detected with transversions,
485 particularly C>A, as the predominant substitutes, which was expected
486 because most patients were smokers (Supplementary Fig. S5A). The
487 commonly mutated cancer genes included TP53, LRP1B, CDKN2A,
488 AR1D1A, and PIK3CA (Supplementary Fig. S5B). High CNV burden
489 was associated with a colder tumor immune microenvironment, as
490 evidenced by lower infiltration levels of overall CD3þ T cells from mIF
491 and lower levels of various immune signatures derived from gene
492 expression profiling (Supplementary Fig. S6A and S6B). Importantly,
493 CNVburdenwas not associatedwith estimated tumorpurity, suggesting
494 the correlation between high CNV burden and cold tumor immune
495 microenvironment was not due to relative high tumor cell density
496 leading todilutionof immunecells. Taken together, these results indicate
497 that chromosomal instability may be an underlying genomic feature
498 associated with immune evasion in metastatic SqNSCLC. Among the
499 commonly mutated cancer genes, mutations in LRP1B, a recently
500 recognized potential regulator of the inflammatory response, was asso-
501 ciated with less infiltration of GZBþ CTLs (CD3þCD8þGZBþ; Sup-
502 plementary Fig. S7A; refs. 45, 46). Interestingly, LRP1B mutations
503 were enriched in nonresponders but not in responders (18/19 vs.
504 2/11, P ¼ 0.049). Furthermore, patients with LRP1B mutations had
505 significantly (P ¼ 0.008) shorter PFS (Supplementary Fig. S7B) and
506 numerically shorter OS in the overall cohort (Supplementary Fig. S7C).
507 LRP1B-mutant tumors were not associated with short PFS in the
508 nivoþipi arm (Supplementary Fig. S7D) but were in the nivo arm
509 (P ¼ 0.033; Supplementary Fig. S7E).

510 Dynamic changes in peripheral blood cytokines are associated
511 with benefit from ICIs
512 Blood-based biomarkers are attractive because they are non-
513 invasive, dynamic, and less impacted by intratumor heterogeneity

515than tissue-based markers (47). We performed Olink proximity
516extension assay using the immuno-oncology panel assaying a series
517of 92 proteins in 561 serum samples collected longitudinally from
518160 patients. Using mixed models to account for demographic
519and relevant clinical covariates with multiple testing adjustments,
520several serum chemokines (CXCL9, CXCL10, CXCL13, CCL19) and
521activated T-cell markers (PD-1, IFNg , IL12, IL10) were found
522durably increased from baseline with either nivo or nivoþipi,
523(Fig. 4A and B) indicating the ICIs’ immune regulating effect.
524Multiple markers of immune activation and priming (ICOS-L,
525LAMP3/DC-LAMP, IL4, IL13, NRC1, CD5) were found increased
526at baseline or early during treatment in responders, regardless of
527treatment type (P < 0.05; Fig. 4C andD), in line with associations of
528these important immune processes with clinical response to ICI.
529Conversely, macrophage-derived and hyperinflammation markers,
530such as IL6, IL8, CXCL13, CSF-1, TNFSF14/LIGHT, and CCL23, as
531well as likely stromal or tumor-derived markers, such as VEGFA,
532HGF, and HO-1, were significantly upregulated in nonresponders
533at baseline or after ICI preceding radiologic progression, with
534some differences based on treatment received for CXCL13 and
535CSF-1 (P < 0.05; Fig. 4C and D). Joint modeling of survival with
536Olink analytes showed an increased risk of death (HR > 1) with
537higher longitudinal serum levels of CXCL13, MMP12, CSF-1, and
538IL8, which was confirmed with independent Kaplan–Meier analyses
539based on median protein levels at baseline (Fig. 4E). Similar results
540were generally observed in the subset of patients with extreme
541outcomes (exceptional responders and early progressors), where
542LAMP3/DC-LAMP was higher while CXCL13, CCL23, and
543TNFSF14 were lower in exceptional responders at baseline com-
544pared with nonresponders (Fig. 4F, P < 0.05). Together with the
545above-described data, and considering only baseline markers, these
546results suggest that an activated T-cell signature (cytotoxic effector
547T cells and DC-LAMP) was important for responsiveness to treat-
548ment with either nivo or nivoþipi, while a hyperinflammatory
549milieu (IL6, IL8, CXCL13, CCL23, TNFSF14/LIGHT, CSF-1,
550MMP12) had an adverse impact on response and OS.

551Integrative analysis of immune features across different
552platforms
553The antitumor immunity and response to ICIs is often deter-
554mined at different molecular levels. The multiomics profiling in
555this study provided a unique opportunity for integrative analysis
556to understand the molecular and immune features associated
557with ICI benefit. We first performed recursive partitioning on
558Olink, mIF, NanoString, and WES data for classification of
559responders (Supplementary Fig. S8A and S8B). We identified
560that proteins from Olink provide good prediction on response.
561However, mIF markers did not contribute significantly in the
562decision tree, which might be due to relatively small sample size
563for mIF (n ¼ 159 for Olink and n ¼ 82 for mIF). We next created
564a decision tree survival prediction model and observed that

(Continued.) Representative multispectral images of panels 1 (B) and 2 (C) show high levels of inflammatory cells in a sample from an exceptional responder patient.
D, Box plot shows GZBþ CTLs (CD3þCD8þGZBþ) in patients with exceptional response compared with patients with early progression/death. Representative
multispectral images of panels 1 (E) and 2 (F) show reduced immune infiltration in a progression/death patient sample. G, The spatial organization of immune and
malignant cell phenotypes for the two mIF panels is shown with an example each from exceptional responders and early progressors. The colors for the different
subpopulations are indicated under panel phenotype legend (on the left).H, For the above images, segregation of different cell phenotypes based on their spatially
varying probabilities is shown as a contour plot. The colors of different neighborhoods are same as the panel phenotypes (above). I, For the above images, Euclidean
distance–based clusters of cells (10 or more) within 20 mm are identified. The clusters are represented by numbers and distinct colors. J, The relative percentage
composition of cell types within each cluster (above) is indicated in the heat map. The corresponding cluster colors are indicated below the heat map for reference.
The color scale representing percentage composition (0–100) is shown on the left.
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567 Cytotoxic.T.cells.antigen.experienced (CD3þCD8þPD-1þ) together
568 with IL6, LAG3 and MICA.B separate patients into sub-populations
569 with different survival. Furthermore, we applied random forest
570 classifier, which identified Cytotoxic.T.cells.antigen.experienced

572(CD3þCD8þPD-1þ) and IL6 as important variables. NanoString
573and WES did not contribute to the association between omics
574markers and outcomes likely due to insufficient samples with data
575from these platforms.

Figure 3.

Kaplan–Meier survival curves of nearest neighbor distance from both arms. A, Upper and lower image showing proximity map overlay, where cyan dots represent
malignant cells (CKþ) and red dots represent T cells (CD3þ). White lines display distances from all malignant cells (CKþ) to neighboring T cells (CD3þ). Kaplan–
Meier survival curves show that distances (≤the median value used as cutoff) from malignant cells (CKþ) to CTLs (CD3þCD8þ; B) and GZBþ CTLs
(CD3þCD8þGZBþ; C), and malignant cells expressing PD-L1 (CKþPD-L1) to CTLs (CD3þCD8þ; D) were associated with better PFS when combining both
treatment arms. E, Kaplan–Meier OS curve for distances from malignant (CKþ) to GZBþ CTLs (CD3þCD8þGZBþ) in both arms. In the nivoþipi arm, Kaplan–Meier
survival curves show that close distances (≤the median value used as cutoff) from malignant cells (CKþ) to CTLs (CD3þCD8þ; F) and GZBþ CTLs
(CD3þCD8þGZBþ; G), and PD-L1þ malignant cells (CKþPD-L1þ) to CTLs (CD3þCD8þ; H) were associated with better PFS. I, Close distances from malignant
cells (CKþ) to GZBþ CTLs (CD3þCD8þGZBþ) was associated with OS.
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Figure 4.

Olink serum soluble analyte assessment. A, Heat map of dynamic changes in protein expression. The x-axis shows the protein names, while the y-axis shows the
comparisons between timepoints and progression. The color represents the logFC. Green represents increase from baselinewhile pink represents decrease. The size
of the circle indicates the statistical significance expressed as –log10(FDR). B, Boxplots andmedian rend lines showing the expression over time by cohort for CXCL9
andCXCL13.C,Heatmap for differential protein expression between responders andnonresponders. The x-axis shows the protein names,while the y-axis showseach
timepoint. The symbol in the heat map represents the statistical significance: circles for FDR < 0.05 or adjusted P values, squares for P < 0.05, and triangles for
nonsignificant or P > 0.05. The color represents the change relative to upregulation in responders (blue) or nonresponders (red). D, Boxplots corresponding to
significant markers in C over time, stratified by treatment arm for the indicated proteins. Comparisons for individual baseline, cycle 2, and cycle 4 timepoints are
shown forP<0.05 andFDR<0.05with (�) and (��), respectively.E,Heatmap showing the concordance indirectionally of differentially expressed proteins significant
between exceptional responders and all responders. The direction of the protein changes was identical between both groups of responders, but only CXCL13 and
CCL23 reached statistical significance (FDR, darker colors) for exceptional responders due the decreased numbers. Nominal significance is shown as transparent
colors, indicating proteins with P < 0.05. F, Volcano plot showing the proteins significantly associated with OS when jointly modeling cytokine expression over time.
The proteins labeled in blue are associatedwith increased HR or decreased survival. Kaplan–Meier OS curves for CSF-1, IL8, CXCL13, andMMP12 stratified on the basis
of their expression from the average expression (higher values from the mean as blue, lower values from the mean as red).
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578 Discussion
579 Identifying novel biomarkers for ICI response is challenging
580 because the molecular determination of TME and host immune
581 response is complex and heterogeneous across different patients. A
582 large sample size to control interpatient heterogeneity andmulti-omics
583 to identify the determinates at different molecular levels are ideal but
584 challenging. Therefore, maximizing the use of clinical, pathologic,
585 molecular data and learning from each patient, particularly from
586 clinical trials and careful analysis is key to pave the way to advance
587 our understanding and ultimately the efficacy of ICI.
588 In this study, we performed mIF, gene expression profiling, WES,
589 and OLINK on the previous samples from S1400I and identified
590 known and novel molecular features associated with nivo versus
591 nivoþipi combination. Responders demonstrated higher densities of
592 multiple immune cell types defined by mIF. Analysis of CTL popula-
593 tions revealed that GZBþ CTLs (CD3þCD8þGZBþ) located in the
594 tumor compartment were associated with better PFS. This was cor-
595 roborated by analyzing the spatial organization of cell phenotypes,
596 whereas higher immune cell population in the tumor region was seen
597 in the TME of exceptional responders than that of early progressors.
598 On the other hand, higher densities of Tregs (CD3þCD8�FOXP3þ)
599 in the total compartment correlated with worse OS in the nivoþipi
600 arm. This highlights the emerging dichotomy regarding the impact of
601 ICI therapies on Treg subsets and function (48), as these combinations
602 may not modulate some Treg subsets and dominance of CTLs is
603 needed to overcome local immune suppression. Conversely, higher
604 densities of memory T cells (CD3þCD45ROþ) and Treg/memory T
605 cells (CD3þCD8�CD45ROþFOXP3þ) were associated with better
606 PFS in the nivo arm. As PD-1 targeting has been shown to result in the
607 reactivation of T cells already present within the tumor immune
608 microenvironment, the presence of Treg/memory T cells at baseline
609 may be an essential biomarker to delineate the need for inclusion of
610 ipilimumab as opposed to a nivolumab alone approach. Estimating the
611 immune subsets usingTIMERandnSolver software demonstrated that
612 a higher immune presence was associated with improved outcome.
613 These results emphasize that an active immune response within the
614 TME is required for a favorable clinical outcome in this setting, which
615 is supported by multiple findings identifying mechanisms of response
616 to ICI-based therapeutic strategies across various cancer types (49–51).
617 The TME is composed of various immune cells and stroma cells
618 entangled with cancer cells. In addition to the densities of different
619 cells, the spatial distribution and proximity among various cell types
620 are also essential features with important impact on the functional
621 status of the tumor immune microenvironment (52, 53). mIF data
622 from this study provided an opportunity to assess the spatial rela-
623 tionship of different cellular components within the tumor immune
624 microenvironment and their association with clinical outcomes from
625 ICI treatment. Using the spatial point metrics through the nearest
626 neighbor analysis, we observed that tumors with higher densities of
627 GZBþ CTLs close to malignant cells were associated with better PFS
628 and OS in the nivoþipi arm, suggesting that cell-to-cell distribution
629 and specially CTLs play an important role in response to ICIs as
630 showed by others studies inNSCLC (54). The organization of cells into
631 clusters based on distance also demonstrated that the CTLs and
632 malignant cells cluster more frequently in exceptional responders
633 than early progressors suggesting a preformed antitumor response
634 that is aided by the ICI.
635 We used WES to identify genomic features underlying particular
636 immune features and found that a higher CNV burden was associated
637 with a lower level of immune cell infiltration overall. Similarly, CNV

639burden was negatively associated with immune scores derived from
640immune gene expression profiling. These findings are in line with
641previous findings in different cancer types suggesting that chromo-
642somal instability may be a common genomic alteration underlying
643immune evasion across human malignancies (53, 55–58). Interesting-
644ly, we also found that patients with LRP1B-mutant tumors had a
645reduced survival compared with patients without LRP1B mutations.
646LRP1B has been identified as a putative tumor suppressor and is
647frequently inactivated in NSCLCs (45). Recently, LRP1Bmutation was
648reported to be associated with better prognosis in melanoma and
649NSCLC after anti-PD-1 therapy (46). However, in our cohort, we
650observed thatLRP1Bmutationwas associatedwith aworseOS andPFS
651in both the nivo arm and nivoþipi combination therapy arms. It is still
652unclear whether the difference was due to different histology (pre-
653dominantly adenocarcinoma in the previous study vs. exclusively
654squamous cell carcinoma in the current study) or different ICI
655(anti-PD-1 vs. anti-PD-1 with/without anti-CTLA-4) or low sample
656size. Of note, the impact of LRPB1 mutations on cancer biology and
657response to ICIs has not been clearly defined in different cancers. For
658example, a study on renal clear-cell carcinoma reported worse prog-
659nosis and suppressive antitumor immunity when LRPB1 was over-
660expressed (59), and another found that LRPB1 mutations were asso-
661ciated with inferior clinical outcomes after ICI treatment in patients
662with hepatocellular carcinoma (60).
663Although tissue-based assays remain the gold standard for molec-
664ular profiling for oncology practice, liquid biopsy, particularly periph-
665eral blood–based assays, have gained more attention for molecular
666profiling and disease monitoring across various cancers because they
667are noninvasive, “real-time,” and less affected by intratumor hetero-
668geneity (61, 62). In the era of immune-oncology, the Olink soluble
669protein detection platform has emerged as a promising tool to assess
670and monitor host immune response. Using Olink, we identified a high
671level of protumorigenic factors, such as VEGFA and CCL23, and
672inflammatory markers, such as IL6, IL8, and MMP12, that were
673associated with inferior survival in this cohort of patients. These
674findings suggest that general inflammation is detrimental in the
675context of cancer and ICI therapy. In contrast, proteins involved in
676T-cell and natural killer cell activation, such as LAMP3/DC-LAMP,
677IFNg/IL4/IL13, and NRC-1, were associated with improved outcomes
678after ICI therapy. It was unexpected that a high level of CXCL13 was
679associated with poor response to ICI therapy and shorter survival,
680given the recent studies reporting this chemokine working together
681with DC-LAMP and playing essential roles in the establishment of
682tertiary lymphoid structures in NSCLC (63). It is possible that the
683relatively high levels of circulating CXCL13 in the serum do not reflect
684relatively rare CD4þT cell–derived tumor tissue–specific expression of
685CXCL13, and this emphasizes the limitations of soluble analytes as a
686surrogate for local tumor events. Some analytes, such asCXCL9/10 and
687soluble PD-1, were dynamically increased with treatment and mar-
688ginally associated with outcomes in exceptional responders, in line
689with previous reports (64). Of particular interest, other markers
690showed the strongest association with objective response during ICI
691treatment, for example, lower CSF-1 or IL6 or higher IL13 at cycle 2.
692This is reminiscent of findings from melanoma studies in which the
693on-treatment biopsy was more informative for long-term benefit from
694ICIs than the baseline biopsy, as the actual changes after treatment
695reflect the host immune system’s response to ICIs more accurate-
696ly (65, 66). Although soluble analytes are not ideal predictive biomar-
697kers to select an optimal initial treatment regimen, if validated, these
698markers will be extremely helpful in switching ineffective therapy to
699effective alternatives to save time and potential toxicity, which is
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702 critically important for patients with stage IV lung cancers, for whom
703 time and quality of life are essential attributes. In addition, these on-
704 treatment markers are also valuable in distinguishing pseudoprogres-
705 sion from real progression—another critical clinical dilemma that the
706 oncologists face in the era of immuno-oncology.
707 As a post hoc profiling of samples from a completed clinical trial, our
708 study has several inherent limitations, including inadequate tumor
709 specimen availability, which precluded us from generating comprehen-
710 sive data integration from all platforms; imbalanced distribution of
711 samples from the nivo versus nivoþipi arms or responders versus
712 nonresponders; inadequate tissues for multiomic analysis and cross-
713 platform integrative analyses; and lack of detailed information regard-
714 ing the time and anatomic sites of tumor specimens, which limited our
715 ability to perform in-depth, organ-specific analysis. In spite of these
716 challenges, integration of peripheral cytokine profiling and cellular
717 profiling within the TME confirmed our single platform findings
718 highlighting the negative association with hyperinflammation with
719 reduced PFS and the presence of PD-1þ CTLs in the TME with
720 increased survival. Finally, while we presented several candidates in
721 this study, we recognize the need for additional validation and repli-
722 cation of our findings. Specifically, several circulating serum proteins,
723 suchas IL6, IL8,CSF-1,MMP12, andCXCL13arepromising candidates
724 for future prospective or post hoc confirmatory studies due to their ease
725 of collection and quantification fromblood. In addition, investigation of
726 tissue composition using spatial profiling technologies to better under-
727 stand the complex interplay between tumor tissue and immune infil-
728 trating cells may shed light on the mechanisms of immune-tumor cell–
729 cell interactions and identify key biomarkers that can identify patients
730 whowill have themost benefit from ICIs. As a proof-of-principle study,
731 using the S1400I trial as an example, we showcased that multi-omics,
732 multi-institutional analyses of patient samples are feasible and can
733 provide valuable insights for future trial development, which is one of
734 the major goals of the CIMAC-CIDC Network.
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